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Abstract 

The intent of this study was to use a positive-ion atmospheric pressure chemical 

ionization mass spectrometer ((+) APCI-MS/MS) to detect organic peroxide products formed 

during β-pinene ozonolysis experiments. Detection was based on utilizing the neutral-loss scan 

(NLS) analysis mode of the APCI-MS/MS to observe ion signals exhibiting unique mass losses 

of 34 u. This mass loss was considered exclusive to protonated organic peroxides containing a 

hydroperoxy moiety. Given this observation, the NLS analysis mode was used to selectively 

detect organic peroxides formed during β-pinene ozonolysis experiments. Overall, six organic 

peroxide structures were proposed. Further product-ion scan analysis on the six proposed 

structures revealed additional unique mass losses of 32 u and 62 u that could be use in 

combination with 34 u NLS analysis to selectively detect organic peroxides. The results from 

this study can assist in ascertaining organic peroxide contribution to secondary organic aerosol 

for future ozonolysis experiments.  
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 1 

1. Introduction to Organic Peroxides 

This study focused on detecting organic peroxides (mainly organic hydroperoxides and 

peroxy acids) since they are important compounds in the natural atmosphere. These compounds 

have an impact on the radical chemistry of the atmosphere and may play a role in secondary 

organic aerosol formation. Considering this, several methods have been employed for organic 

peroxide detection. A review of these detection methods reveals the complications associated 

with organic peroxide detection. For this reason, this study looked into using mass 

spectrometric analysis for organic peroxide detection. 

 

1.1. Introduction to Organic Peroxide Formation 
 

It is of great interest to study how both biogenic (originating from plants) and 

anthropogenic (originating from human activities) disturbance affects the troposphere. Of 

particular importance in atmospheric research is the resultant chemical composition of the 

troposphere after biogenic or anthropogenic perturbation. Moreover, the chemical composition 

at the trace level is largely controlled by the presence of various oxidants in the troposphere 

(Reeves and Penkett, 2003). These oxidants include nitrate (NO3), hydroxyl (HO), 

hydroperoxyl (HO2) and peroxy (RO2) radicals and ozone (O3) (Lee et al., 2000). The presence 

of these oxidants help determine the lifetime of many biogenic and anthropogenic pollutants 

such as methane (CH4) (Lee et al., 2000 and Reeves and Penkett, 2003).  In the troposphere, 

HO radicals are the most important oxidant arising from the photolysis of O3 (Lee et al., 2000). 

Aside from photolysis, HO radicals are regenerated through the photolysis of hydrogen 
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peroxide (H2O2) and organic hydroperoxide (ROOH) (Reaction 1.1 to 1.2) (Jacobs, 1999 and 

Lee et al., 2000). 

H2O2 + hν → 2 HO  Reaction 1.1 

ROOH + hν → RO + HO Reaction 1.2 

H2O2 is the main gas-phase hydroperoxide produced through the self-reaction of HO2 radicals in 

the atmosphere (Reaction 1.3) (Lee et al., 2000 and Crounse et al., 2006). However, organic 

hydroperoxides are generally formed in the atmosphere through the oxidation of volatile 

organic compounds (VOC) with either O3 or HO radicals.  Reaction 1.4 to 1.6 shows the 

general reaction for organic hydroperoxide formation from HO radicals with VOC (represented 

by RH), while O3-initiated organic hydroperoxide formation is discussed in greater detail in 

Section 3.3.  

HO2 + HO2 → H2O2 + O2 Reaction 1.3 

RH + HO → R + H2O Reaction 1.4 

R + O2 + M → RO2 + M Reaction 1.5 

RO2 + HO2 → ROOH + O2 Reaction 1.6 

  The most dominant organic hydroperoxide in the atmosphere is methyl hydroperoxide 

(MHP) primarily produced by the oxidation of CH4 with HO radicals (Jackson and Hewitt, 1999 

and Lee et al., 2000). However, higher order organic hydroperoxides can form through 

reactions 1.4 to 1.6 if VOC in the atmosphere contain more than one carbon. Table 1.1 adopted 

from Jackson and Hewitt (1999) and Lee et al., (2000) lists other organic hydroperoxides 
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identified in the atmosphere, that are formed from VOC containing more than one carbon 

within its structure. For instance, ethyl hydroperoxide is formed from HO-initiated oxidation of 

ethane (Lee et al., 2000). Organic peroxy acids (RC(O)OOH) like peroxyacetic acid, forms by 

HO2 radicals reacting with acylperoxy radicals (RC(O)O2) as oppose to peroxy radicals (Kroll 

and Seinfeld, 2008). The formation of acylperoxy radicals originates from HO-inititated 

oxidation of hydrocarbons containing a carbonyl functional group like acetone or acetaldehyde 

(Jacobs, 1999 and Lee et al., 2000).  Reactions 1.7 to 1.9 illustrate how the oxidation of 

acetaldehyde can form the acylperoxy radical and peroxyacetic acid. 

 

 

Peroxide Chemical Formula 

Hydroxymethyl hydroperoxide HOCH2OOH 

Ethyl hydroperoxide CH3CH2OOH 

Hydroxyethyl hydroperoxide CH3CH(OH)OOH 

Hydroxypropyl hydroperoxide CH3CH(OH)CH2OOH 

Peroxyacetic acid CH3C(O)OOH 

 

 

 

Table 1.1: Organic peroxides identified in the atmosphere 
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CH3CH(O) + HO → CH3C(O) + H2O Reaction 1.7 

CH3C(O) + O2 + M → CH3C(O)OO + M Reaction 1.8 

CH3C(O)OO + HO2 → CH3C(O)OOH + O2 Reaction 1.9 

The peroxides shown in Table 1.1 originate from hydrocarbons containing 2 to 3 

carbons within its structure. However, studies have shown that additional sources of organic 

hydroperoxides can arise from biogenic hydrocarbon oxidation (Docherty et al., 2005, Heaton 

et al., 2007, and Reinnig et al., 2009). This is pivotal since it is estimated that biogenic 

hydrocarbon emissions dominate over anthropogenic emissions (Yu et al., 1999). An important 

class of biogenic hydrocarbons capable of forming organic hydroperoxides and peroxy acids are 

monoterpenes (C10H16). According to Lee and coworkers (2006), these compounds are emitted 

from conifers as well as broad-leaved trees. Moreover, Docherty and coworkers (2005) stated 

that monoterpene emissions account for approximately 10 % of the total global biogenic 

hydrocarbon emissions. A great detail of research has focused on α- and β- pinene since these 

two monoterpenes constitutes a large portion of global monoterpene emissions (Jenkin et al., 

2000 and Jenkin, 2004).  

1.2. Relation to Secondary Organic Aerosol 
 

Aside from being a reservoir for HO, HO2 and RO2 radicals, organic hydroperoxides 

may play role in secondary organic aerosol formation (SOA) (Heaton et al., 2007 and Reinnig 

et al., 2008). Studies on SOA formation and composition are widely found in the atmospheric 

science literature owing to its potential impacts on human health and global climate (Heaton et 

al., 2007 and Kroll and Seinfeld 2008). A precursor to SOA formation is the gas-phase 
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oxidation of VOC in the atmosphere. Generally, VOC oxidation can lead to products with 

sufficiently low vapour pressure. As a result, lower vapour pressure products can contribute to 

SOA by forming new particles or by condensing onto existing particles (Kroll and Seinfeld, 

2008 and Reinning et al., 2009). Despite the abundance of atmospheric literature, SOA 

formation and composition continues to be poorly understood (Kroll and Seinfeld, 2008). 

However, recent modelling studies have estimated that organic peroxides (organic 

hydroperoxides and peroxy hemiacetals) might be a major component of SOA (Jenkin, 2004 

and Reinnig et al., 2008 and 2009). For example, during α- and β- pinene ozonolysis 

experiments, bulk peroxide analysis showed that organic peroxides contributed to 

approximately 47 and 85 % of SOA mass formed respectively for each reaction (Docherty et 

al., 2005). Furthermore, Heaton and coworkers (2007) have suggested that further reactions of 

organic peroxides can form higher molecular weight dimers and oligomers. These compounds 

are suspected to be better candidates for new particle formation in comparison to other 

commonly found oxidative species like carboxylic acids during monoterpene oxidation 

experiments (Heaton et al., 2007).  
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2. Methods for Hydrogen Peroxide and Organic Peroxide Detection 

2.1. Previous Detection Methods 
 

Several techniques have been used to detect these compounds in ambient air samples. A 

majority of these methods either employ spectrometric techniques or extensive sample 

treatment coupled with chromatography. Earlier methods looked at measuring hydrogen 

peroxide (H2O2) using a colorimetric technique. For example Bufalini and coworkers (1975) 

measured H2O2, a resultant product from formaldehyde photo-oxidation, by forming a coloured 

complex using titanium (IV) and 8-quinilinol as colorimetric reagents. This paper expanded on 

Purcell and Cohen (1967) original work on H2O2 detection using kinetic colorimetry. However, 

this technique suffered from both chemical and physical interferences. For instance, compounds 

like peroxyacetic acid (PAA) and O3 produce a coloured complex similar to that produced by 

H2O2 under the same experimental conditions. Moreover, other compounds like MHP, ethyl 

hydroperoxide, n-butyl hydroperoxide, tert-butyl hydroperoxide and peroxyacetylnitrate also 

produced a coloured complex similar to H2O2 even though the response time was slower than 

that of H2O2 under the same experimental conditions. Similarly, Bufalini et al., (1975) found 

that O3 produced from the presence of part-per-billion levels of NOx, produced a coloured 

complex similar to that of H2O2. Consequently, the chemical interference caused by compounds 

other than H2O2 inhibited the selective detection of H2O2. Although a total oxidant 

concentration could be obtained by this method, there would be no way to distinguish each 

compound from each other. Further compounding this problem was the rate at which the 

coloured complex formed. Purcell and Cohen (1967) observed colour complexes forming at 

different rates under the same experimental conditions. For instance, Purcell and Cohen (1967) 
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calculated the colorimetric half-life for different oxidants. Under the same experimental 

conditions, H2O2 formed a coloured complex immediately yielding a short half-life while ethyl 

hydroperoxide had a colorimetric half-life time of 50 minutes. Aside from chemical 

interferences, colorimetric techniques generally suffer from issues like visible light scattering 

especially in the presence of atmospheric particulates (Lee et al., 2000).  

 Spectrometric methods continued to improve detection by employing 

chemiluminescence techniques. One of the first chemiluminescence methods reported by Kok 

et al., (1978) utilized adsorbing coils and impingers to extract and concentrate H2O2 into 

aqueous phase during ambient sampling. Subsequently, H2O2 in the aqueous phase oxidized 

luminol in the presence of copper (II) to produce a complex that emitted at a wavelength of 450 

nanometers (nm).  Another chemiluminescence method described by Jacob and Klockow 

(1992) used peroxyoxylate to measure H2O2 in a marine atmosphere. Unlike the previous 

method, this method used a cool glass tube to trap H2O2 and water in the ice phase before 

melting and reacting with peroxyoxylate. This prevented analytical issues such as inlet loss and 

production of H2O2 by O3 on the surface of impingers (Lee et al., 2000).  However, both 

chemiluminescence methods only identified and quantified H2O2. 

Conversely, early fluorometric analysis was able to detect and measure both H2O2 and 

organic hydroperoxides simultaneously. For instance, Lazrus et al., (1986) utilized an 

automated two-channel set-up where one channel measured H2O2 and organic hydroperoxides 

and the second channel measured just organic hydroperoxides. To accomplish this, both 

channels were treated with the enzyme peroxidase to produce a fluorescent dimer detected at an 

excitation wavelength of 400 nm; the second channel was pre-treated with catalase, an enzyme 

that selectively destroyed H2O2. However, it was determined that catalase was not as selective 
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since additional experiments with selected organic hydroperoxides revealed a slight reaction to 

MHP (Lazrus et al., 1986).  Circumventing this analytical issue required Lazrus and coworkers 

(1986) to add sufficient catalase to react all but 3% of H2O2 within an aqueous sample. 

Consequently, this results in a level of uncertainty in determining H2O2 especially if organic 

hydroperoxide concentration is higher than H2O2 concentration (Lee et al., 2000) 

Eventually, fluorometry was used in conjunction with chromatographic techniques. Kok 

et al. (1995) successfully detected and measured H2O2, hydroxymethyl hydroperoxide, 

peroxyformic acid, MHP, and PAA in aqueous solution. Compounds were successfully 

separated using high performance liquid chromatography (HPLC) then derivitized with 

peroxidase. The resultant fluorescent dimers were detected using a fluorescence detector. 

Identification of each compound was based on a comparison of elution times between 

previously analyzed standards and aqueous samples under the same conditions. Since there are 

only a handful of commercially available organic peroxide standards, some standards had to be 

synthesized, purified and standardized for quantitative use (Kok et al., 1995). 

Additionally, tunable diode laser absorption spectroscopy (TDLAS) has been used to 

provide on-line determination of H2O2. Unlike previous methods described above, 

measurements are performed in the gas-phase and do not require pre-treatment. For example, 

Mackay et al. (1990) used this method to obtain a diurnal profile for H2O2. However, 

instrument calibration was achieved by utilizing permeation devices, which proved to be 

problematic because of temperature variations (Mackay et al., 1990). Despite a shift to an on-

line approach, this method was specific to H2O2 and provided no information regarding organic 

peroxides.   
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 Alternatively, mass spectrometry is a technique that could provide fast on-line analysis 

for organic peroxides. Generally, it provides information regarding the molecular weight of 

species and depending on the type of mass spectrometer, can provide structural information of a 

compound. Unlike colorimetric and fluorometric methods, samples to be analyzed do not need 

to be extracted into solution and treated with colorimetric or derivitizing reagents for detection.  

Furthermore, mass spectrometry is not affected by organic peroxide solubility in different 

solvents or the ability to separate a mixture of different organic peroxides whereas HPLC 

analysis relies heavily on these attributes. Lastly, TDLAS is only capable of measuring H2O2 

and at best can discriminate between H2O2 and organic hydroperoxides when paired with a 

similar experimental set-up as the one described by Lazrus et al., (1986) (Weinstein-Lloyd et 

al., 1998). On the other hand, mass spectrometry can detect a wide range of products depending 

on the type of mass spectrometer utilized. Mass spectrometry simply requires samples to be 

ionized before subsequent analysis and detection. An array of ionization techniques is available 

in mass spectrometry and is normally selected based on the physio-chemical properties of the 

sample to be analyzed.  

Mass spectrometry techniques have already been employed to detect organic peroxides 

during ambient or laboratory studies. For example Crounse et al., (2006) used chemical 

ionization mass spectrometry (CIMS) to detect H2O2 and PAA during airborne observations. 

Detection was accomplished by chemically ionizing both compounds with CF3O- ions to form a 

cluster. Similarly, CIMS was used by Reinnig et al., (2009) to identify and characterize organic 

hydroperoxide and peroxy acid structures generated by gas-phase ozonolysis of both 

monoterpenes and sesquiterpenes. Their detection was achieved by chemically ionizing formed 

products with protonated water ions (H3O+) (Reinnig et al., 2009). Collectively, these methods 
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show that mass spectrometry can provide fast on-line analysis for identification and 

characterization of unknown organic peroxides. 

 

2.2. The Current Project 

The aim of this project is to expand on chemical ionization methods published in the 

scientific literature (Baker et al., 2001, Rondeau et al., 2003, Crounse et al., 2006, Heaton et al. 

2007, and Reinnig et al., 2009) to develop a technique for organic peroxide detection. 

Specifically, a positive-ion atmospheric pressure chemical ionization mass spectrometer ((+) 

APCI-MS/MS)) is utilized to evaluate its ability to detect organic peroxides formed during gas-

phase ozonolysis experiments of β-pinene inside York University’s smog chamber. 

Establishing a technique requires an understanding of the ion-molecule chemistry occurring 

inside the instrument during on-line analysis and evaluating various operational modes for the 

(+) APCI-MS/MS. Subsequently, knowledge gained will be applied to smog chamber 

ozonolysis experiments to selectively detect organic peroxides. Selective detection is beneficial 

since instrument responses relating to organic peroxides can be isolated from other isobaric 

compounds to aid in structure elucidation. As a result, structure elucidation can assist in 

understanding chemical transformations of monoterpenes in the atmosphere. 
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3. Sample Ionization for Mass Spectrometry  

3.1. Ionization Techniques for Mass Spectrometry  

Mass spectrometry analysis requires samples to be ionized before detection. A variety of 

ionization techniques can be employed to ionize samples. Ionization techniques are generally 

based on the amount of internal energy transferred during the ionization process and the 

physico-chemical properties of the sample (de Hoffmann and Stroobant, 2007). For example, 

electron ionization (EI) is a commonly used ionization technique in organic chemistry where a 

neutral sample absorbs energy after interacting with an ionizing electron (70 eV). When enough 

energy is absorbed, an electron is ejected from the analyte to produce a molecular ion (M+·) in 

the mass spectrum. Since most organic molecules require approximately 10 eV for ionization 

(de Hoffmann and Stroobant, 2007), the excess energy can induce excessive fragmentation in 

the ion source. As a result, the EI technique can fail to produce intact molecular ions. 

Furthermore, the mass spectrum will predominately display fragments of the molecular ion 

making it difficult to elucidate the molecular structure. Since organic compounds like organic 

peroxides contain a weak peroxy bond (O-O), EI is generally an inadequate ionization 

technique for its ionization and subsequent identification.  

 

3.1.1. Chemical Ionization 

Alternatively, chemical ionization (CI) is a “softer” ionization technique compared to 

EI, where analyte ions are produced with little excess energy. As a result, the mass spectrum 

displays less fragmentation in comparison to EI and the analyte ion can be detected. In CI, 

target neutral molecules (M) are ionized through a series of collisions with reagent ions present 
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in the ion source. These ion-molecule collisions can result in a series of reactions that include 

proton transfer, hydride abstraction, adduct formation and charge transfer. Proton transfer is the 

most common ion-molecule reaction to occur in the ion source resulting in the formation of a 

protonated analyte molecule having the form [M + H]+   (Reaction 3.1.1).  

M + RH+ → [M + H]+ + R	   Δ Hrxn° = - ΔPA	   GB = -ΔGrxn° Reaction 3.1.1 

 

During a proton transfer reaction, reagent ion RH+ donates a proton to a neutral 

molecule (M), forming a [M + H]+ ion. This reaction is analogous to an acid-base reaction 

where reagent ions (RH+) and the neutral molecule (M) are considered a Brönstead acid (proton 

donor) and Brönstead base (proton acceptor), respectively. Furthermore, the ability for Reaction 

3.1.1 to proceed as written is dependent on the proton affinity (PA) and gas-phase basicity (GB) 

for both species. PA is defined as the negative enthalpy change for the protonation reaction 

described by Reaction 3.1.1. On the other hand, GB is defined as the negative change in Gibbs 

free energy for Reaction 3.1.1. While PA indicates whether heat is released (exothermic) or 

absorbed (endothermic) during a reaction, GB indicates whether the reaction can be 

spontaneous under specific conditions. Ultimately, these two thermochemical parameters are 

related through the expressions shown in Equations 3.1.1 and 3.1.2 (Gal et al., 2001). Proton 

transfer will occur as long as the PA and GB of the target neutral molecule (M) are higher than 

the PA and GB of the reagent ion (RH+).  

ΔGrxn° = Δ Hrxn° - T	  ΔS° Equation 3.1.1 
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GB = PA - T	  ΔS° Equation 3.1.2 

In the event that the PA of a neutral molecule (M) and the reagent ion (RH+) are similar, 

adduct formation occurs as opposed to proton transfer (Reaction 3.1.2) (de Hoffmann and 

Stroobant, 2007). As a result, an adduct ion [M + RH]+ will be observed in the mass spectrum 

instead of a protonated molecule [M + H]+. This association reaction is also commonly 

considered as a form of gas-phase solvation (de Hoffmann and Stroobant, 2007).  

M + RH+ → [M + RH]+   Reaction 3.1.2 

  

3.1.2. Protonation of Target Neutral Molecules 

 The previous section discussed thermochemical quantities governing the gas-phase 

protonation described by Reaction 3.1.1. However, it is noteworthy to discuss parts of the target 

neutral molecule (M) where a proton can attach.  Although the focus is not to discuss this 

subject in great detail, general knowledge of target neutral molecule’s basic sites for proton 

attachment is useful for this project. According to Bouchoux (2007), proton transfer reactions 

can result in changes like bond weakening or strengthening depending on the attachment site. 

Therefore knowledge of basic sites on target neutral molecules will assist in the interpretation 

of mass spectra acquired in this project. Since organic peroxides are the primary focus of this 

project, proton transfer to these target neutral molecules are only considered in this section.  

Organic peroxides contain numerous basic sites for proton attachment depending on the 

chemical structure. Using the general structure of organic peroxide shown in Figure 3.1, the 

peroxy bond (-O – O-) provides a basic site for proton attachment. The two oxygen atoms 
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comprising the peroxy bond contain two lone electron pairs not shared by any atom within the 

organic peroxide structure. This results in an electron rich area within the organic peroxide 

structure susceptible to chemical reactions like proton transfer. During proton transfer, an 

electron is transferred from the lone pair on either oxygen atom to the incoming proton to form 

a chemical bond (Bouchoux 2007).  

 

 

 Aside from the peroxy bond, organic peroxides can contain additional basic sites for 

proton attachment depending on the nature of R and R1 shown in Figure 3.1. For example, R 

and R1 structures containing carbonyl (-C=O) or alcohol (-OH) groups are basic sites for proton 

attachment. Similar to the peroxy bond, the C=O and OH groups are electron rich due to the 

presence of two lone electron pairs on the oxygen atom. However, the presence of a double 

bond (two bonding electron pairs) between the carbon and oxygen of a carbonyl group, 

contributes to the electron rich region surrounding the carbonyl group. Additionally, R and R1 

can contain a phenyl ring group (-C6H5). Phenyl ring groups do not contain true double bonds 

since electrons are delocalized. Given this, electrons cannot be transferred to the incoming 

proton to form a chemical bond.  However, theoretical and experimental studies done by 

Rondeau et al., (2008) showed that organic peroxides containing a phenyl group can protonate 

within the phenyl ring. Considering this study, the presence of a phenyl group is considered an 

additional basic site for proton attachment during this project.     

  

R

O

O

R1

Figure 3.1: General structure for an organic peroxide. R and R1 represent carbon chains which 
may contain other functional groups. 
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3.1.3. Atmospheric Pressure Chemical Ionization (APCI) 

Since the resultant analyte ion from CI is dependent on the collisions between reagent 

ions RH+ and neutral molecules M, the pressure inside the source must be sufficiently high to 

promote collisions. For this reason, CI is normally conducted under higher pressure conditions 

in comparison to EI. In EI, ionization is normally performed at 10-2 Pa while CI is performed at 

more than 100 Pa (de Hoffmann and Stroobant, 2007). APCI is an example of a CI method 

where the ionization is achieved under atmospheric pressure conditions to promote collisions 

between the reagent ions RH+ and the neutral molecules M. Ionization is initiated by low-

energy thermal electrons from either a beta source or a corona discharge (de Hoffmann and 

Stroobant, 2007 and Watson and Sparkman, 2007). The low-energy thermal electrons ionize the 

major components of the neutral reagent gas, which can in turn ionize the analyte through a 

series of ion-molecule reactions. As a result, these reactions produce both positive and negative 

ions. These reactions are discussed in detail in latter sections.  

 

3.1.4. Ionization Reagent Selection for APCI 

To promote ion-molecule reactions like proton transfer or adduct formation, an 

appropriate ionization reagent must be selected. The selection of an ionization reagent will 

depend on the nature of the ionization reagent and sample being analyzed. In APCI, the 

appropriate selection of an ionization reagent would result in the production of proton-rich ions 

from a neutral sample molecule through ion-molecule reactions. For example ammonia (NH3) 

has a relatively high PA (Table 3.1) making it a good Brönstead base. To detect this neutral 

molecule in the positive-ion APCI mode, the ionization reagent selected must have a lower PA 

(strong Brönstead acid) to donate the proton to ammonia to form the ion NH4
+ ([M + H]+ ion). 
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Using Table 3.1 methane (CH4), water (H2O), and methanol (CH3OH) can be used as an 

ionization reagent.  

Additionally, the ionization reagent selected will affect the appearance of the acquired 

mass spectrum. The difference in mass spectrum appearance derives from the amount of excess 

energy transferred during the ionization process of the neutral molecule. In general, the amount 

of excess energy available is related to the difference in the proton affinity (ΔPA) between the 

neutral molecule and the ionization reagent (Watson and Sparkman, 2007). The greater the 

ΔPA, the more excess energy is available during the formation of the protonated molecule ([M 

+ H]+) (Watson and Sparkman, 2007). Consequently, the excess energy available can cause 

extensive fragmentation of the protonated molecule [M + H]+.  Since the ΔPA can influence the 

stability of the [M + H]+ ion, this value along with PA must be taken into consideration when 

selecting an ionization reagent. 

 

 

Ionization Reagent Proton Affinity of Ionization Reagent 

(kJ mol-1) 

CH4 551 

H2O 697 

CH3OH 762 

NH3 854 

(CH3)2NH 921 

[Watson and Sparkman, 2007] 

 
Table 3.1: Characteristics of selected ionization reagents for CI 
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4. Operation Mode for the APCI-MS/MS  

4.1. Description of the APCI-MS/MS 
 

 The APCI-MS/MS used in this project consists of three main parts: (i) the ion source 

operated at atmospheric pressure that generates sample ions; (ii) a vacuum interface that allows 

the transfer of ions from the ion source to the mass spectrometer; and (iii) a high vacuum 

chamber that houses a quadruple ion guide (qo), two mass analyzers (Q1 and Q3), a collision 

induced dissociation cell (CID) (q2), and lastly a channel electron multiplier detector (CEM). 

Figure 4.1.shows a general schematic of the APCI-MS/MS design used in this project. 

 

  

 
 

4.1.1. The APCI-MS/MS Ion Source 

Figure 4.2 outlines the principle for the APCI ion source. The corona discharge needle 

emits a cloud of electrons ionizing the components of air surrounding the needle (N2, O2, H2O, 

etc.). The initial ionization forms primary ions through the sequence of reactions (Proctor and 

Todd, 1983): 

Figure 4.1: Detailed schematic of APCI-MS/MS 
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N2 + e- → N2
+ + 2e- Reaction 4.1 

N2
+ + 2N2 → N4

+ + N2 Reaction 4.2 

N4
+ + H2O → H2O+ + 2N2 Reaction 4.3 

H2O+ + H2O → H3O+ + OH Reaction 4.4 

 Since water (H2O) is found in trace amounts of air and has the highest PA of all gases found in 

ambient conditions, the ions formed in the APCI ion source are predominately H3O+ and 

(H2O)nH+ (if n is greater than 1) (Watson and Sparkman, 2007).  Additional secondary ions can 

form if the analyte matrix is present in the gas phase. The secondary ions formed in the ion 

source act as the ionization reagent, which, in the positive ion mode, reacts further with neutral 

analyte through proton transfer or addition. Operating the ion source at atmospheric pressure 

ensures a large number of ion-molecule and molecule-molecule collisions that thermalizes the 

ions and ensures high reaction rates. The resultant gas-phase ions are then transferred to the 

mass analyzer through the use of differential pumping.  
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4.1.2. Vacuum Interface Region 

After ionization, generated ions are drawn into the vacuum interface region by a 

potential gradient formed across the interface region. In addition to allowing sample ion 

transfer, the vacuum interface region separates the high pressure region of the ion source from 

the low pressure region of the vacuum chamber. The vacuum interface region is comprised of 

two regions known as the gas curtain interface and differentially pumped interface region. 

Figure 4.3 depicts a detailed diagram of the vacuum interface region. Ions entering into the gas 
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Figure 4.2: Diagram for the APCI-MS/MS ion source. (a) Shows an overall view while (b) 
shows a more detailed diagram of ionization within the plasma region of the corona discharge 
in the absence of sample. The components of air are ionized at atmospheric pressure 
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curtain interface encounter a flow of curtain gas (usually purified nitrogen). This curtain gas 

prevents sample, solvent and ambient air from entering the mass spectrometer. Additionally, 

gas phase ions collision with the curtain gas can effectively fragment weakly associated ions, 

commonly known as de-clustering. This region is at atmospheric pressure to help retain the 

stable ion-molecule products formed in the ion source. 

After ion de-clustering, sample ions are transferred towards the differentially pumped 

interface by the pressure differential across the orifice plate. Additionally ion transmission is 

favoured by a voltage difference applied between the orifice plate and skimmer. This is the first 

low pressure region the sample ions encounter before they enter the high vacuum chamber 

containing the quadruples. This region is normally around 2.2 Torr and is maintained by a 

mechanical pump located outside the instrument. Sample ions enter the high vacuum chamber 

through an aperture in the skimmer cone.  
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Figure 4.3: Detailed diagram of vacuum interface region 
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4.1.3. High Vacuum Chamber 

After ion de-clustering in the vacuum interface, gas-phase ions enter the high vacuum 

chamber housing the quadrupoles. However, gas-phase ions have a tendency to disperse after 

leaving the ion source. This can result in a loss of ions between the ion source and the mass 

spectrometer. The APCI-MS/MS used in this experiment combats this issue by using a radio 

frequency (RF) ion guide quadrupole (q0). The following sections outline the theory behind 

quadrupole operation. After passing through q0, gas-phase ions encounter three sequential 

quadrupoles, Q1, q2, and Q3. Q1 and Q3 are mass filters while q2 is another ion guide. In addition 

to being an ion guide, q2 can be used as a collision cell where target gas-phase ions are 

fragmented and analyzed by tandem mass spectrometry. Ultimately, the fate of gas-phase ions 

through each quadrupole will depend on the operation mode of the APCI-MS/MS.  

 

4.1.4. Description of the Quadrupoles 

The quadrupoles used in mass spectrometry are composed of four preferably hyperbolic 

but usually circular parallel metal rods, which, can be used to set up an electric field to control 

gas-phase ions. Figure 4.4 (a) and (b) depicts the geometry for the four quadrupoles along a X-

Y and X-Z plane. This geometry can be used to make an ion guide, if radio frequency (RF) 

voltage is applied to the rods, and a mass filter if a RF and direct current (DC) voltage is 

applied.  
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4.1.4.1. Ion Guides 

Consider first applying only an RF voltage to the rods depicted in Figure 4.4 (a) and (b). 

Using description presented by Miller and Denton (1986), the operation of ion guides (q0 and 

q2) is best visualized by describing the motion of gas-phase ions traveling along the z-axis in 

the X-Z and Y-Z plane as RF voltage is applied to each rod. The equations governing the 

motion of gas-phase ion through the ion guides is discussed in later sections. 

When RF is applied to the rods, the rods along the x-axis will obtain a positive potential 

for half a cycle then acquire a negative potential for the other half of the cycle. When the two 

rods shown in Figure 4.4 (a) are positive, positively charged gas-phase ions will accelerate and 

focus towards the center of the two rods due to repulsion. On the other hand, a negative 

(b) 

X 

Z 

Y 

X 

Z 

Y 

(a) 

Figure 4.4: Diagram illustrating the position of the rods in three-dimensional space. Gas phase 
ions travel along the z-axis 
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potential acquired during the second half of the cycle results in positively charge gas-phase ions 

accelerating towards the rods and away from the center due to attraction. The rod potentials 

alternate to prevent the positive gas-phase ions from discharging itself on the rods. Although 

this describes gas-phase ion motion for the X-Z plane, this rationale can be applied to the rods 

along the y-axis and ion pathway along the Y-Z plane (Figure 4.4 (b)). Ultimately, the 

alternating rod potentials create an oscillating field to reduce the amount of dispersion while 

gas-phase ions travel through the ion guide quadrupoles (Watson and Sparkman, 2007).  

 

4.1.4.2. Mass Filters 

For the mass filter, each pair of rods in Q1 and Q3 has a DC potential supplied to it in 

addition to the applied RF voltage needed. Using Figure 4.4 (a) and (b), rods along the x-axis 

are subjected to a positive DC potential while rods along the y-axis are subjected to a negative 

potential. Figure 4.5 shows the superposing RF and DC potentials on opposing rod pairs. 

When rod pairs lying along the x-axis are subjected to a positive DC voltage, heavier 

gas-phase positive ions traveling along the X-Z plane will move towards the z-axis while 

traveling through the quadrupole. Although rods along the x-axis experience negative potential 

due to the changing RF voltage, this change has a negligible affect on heavier gas-phase ions. 

On the other hand, RF voltages effects lighter gas-phase ions. Lighter ions experiencing a 

negative voltage will accelerate, collide with the rods, discharge, and become neutral. As a 

result, the rods along the x-axis as shown in Figure 4.4 (a) act as a high mass pass filter, 

allowing masses above a certain critical m/z value to pass (de Hoffman and Stroobant, 2007). 

Masses below that critical value will be filtered out. The same logic can be applied for rod pairs 

along the y-axis (Figure 4.4 (b)). Unlike the rod pairs shown in Figure 4.4 (a), rod pairs along 
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the y-axis have a negative DC voltage applied to each rod. Positive heavier gas-phase ions will 

move away from the z-axis and travel towards the negative rods without being effected by the 

RF voltage. Contrastingly, lighter gas-phase ions are focused towards z-axis especially when 

the positive cycle of the RF voltage is larger than the negative DC voltage. As a result, rod pairs 

lying along y-axis will act as a low mass pass filter, allowing certain masses below a critical m/z 

value to pass. For gas-phase ions to pass through both Q1 and Q3, the ions must be stable along 

both X-Z and Y-Z planes. This forms the basis of the quadrupole mass filter.  

 

 

 

4.1.4.3. Equations of Motion for Mass Filters 

As ions are travelling along the z-axis, the ion’s motion through the quadrupoles can be 

described using a combination of Paul and Mathieu’s equation described by Miller and Denton 

X rod pairs = + (U + V(cosωt) 

Y rod pairs = - (U + V(cosωt) 
2r0 

Figure 4.5: Illustration showing the superposing RF and DC potentials to opposing APCI-
MS/MS rods. U and V are the magnitude of the DC and RF potential, respectively; r0 is the 
distance from the z-axis; ω is the angular frequency for the RF potential; and t is time. 
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(1986). These equations of motions can be found in Appendix A since the focus of this project 

was not to derive or solve these equations. However, these equations help establish a 

relationship between the x and y positions of gas-phase ions and time as ions travel along the z-

axis. Essentially, as long as the x and y positions of gas-phase ions are less than r0 (Figure 4.5), 

gas-phase ions can pass through the quadrupole without discharging against the rods. Using 

Paul and Mathieu’s equation (Appendix A), x and y can be determined for any ion mass as a 

function of U (DC) and V (RF).  

A diagram representing the stability areas for gas-phase ions along the x- and y-axis is 

shown in Appendix A along with a brief explanation. An enlarged diagram showing stability 

region in Figure A.3 is given in Figure 4.6. Changing from one m/z value to another causes a 

proportional multiplication of Equation A.3 and A.4 in Appendix A. Therefore, the triangular 

area shown in Figure A.3, will change from one mass to the other producing multiple 

proportional triangles as shown in Figure 4.6. Figure 4.6 is of great importance since it 

quantitatively shows how quadrupoles operate as mass filters and ion guides. This diagram 

shows values of a and q for which mass m1, m2, and m3 are stable and will transmit through 

mass filter quadrupoles. Stable values of a and q, are represented by the area inside their 

respective triangle. Moreover, a and q values falling outside the portrayed triangles in Figure 

4.6 are unstable areas and will result in an ion discharging itself against the rods.   
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Although different combinations of RF (q) and DC (a) will allow certain masses to be 

stable and transmit through the quadrupole, the APCI-MS/MS operates by changing RF and DC 

at a fixed ratio. Using Figure 4.6, changing the DC/RF by a fixed ratio restricts the instrument 

to a set of points along a straight line (mass scan line) (de Hoffmann and Stroobant, 2007). As a 

result, gas-phase ions where m1, m2, and m3 have a and q values located on the mass scan line, 

will be stable and transmit through the quadrupole. Additionally, Figure 4.6 shows that 

lowering the DC/RF ratio can lower the quadrupoles’ ability to separate gas-phase ions. This 

can be visualized hypothetically by considering mass scan line 1 and 2 in Figure 4.6. Using 

these two mass scan lines, it can be seen a quadrupole operating along mass scan line 1 can 

separate and transmit m2 and m3 gas-phase ions efficiently as opposed to mass scan line 2 

m3 
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m1 
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Figure 4.6: Schematic illustrating the stability for ions inside a quadrupole. The stability areas 
are a function of a (DC) and q (RF). Values of a and q where ions with mass m1, m2 and m3 are 
stable inside a quadrupole, are represented by the area inside the triangle for each mass. Mass 
scan lines are obtained by changing the ratio of DC/RF by a fixed value.  
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where quadrupole operation eventually reaches a point where m2 and m3 can not be separated. 

This aspect is known as the resolving power for the quadrupoles. Overall, the APCI-MS/MS 

operates by changing the DC/RF at a fixed ratio and can detect sequentially a range of masses 

to ultimately generate a mass spectrum.  

Additionally it is important to note that Figure 4.6 can be used to explain why all gas-

phase ions are transmitted through an ion guide quadrupole. In the previous section, the RF-

only mode for ion guides was discussed. Since there is no DC component (a = 0 in Figure 4.6 

and Equation A.8), the mass scan line lies horizontally along the x-axis representing values of q 

(de Hoffmann and Stroobant, 2007). Therefore theoretically, all ions are stable and will transmit 

through the ion guide. However, this is not necessarily true since the horizontal line 

representing values of q in Figure 4.6 show that smaller ions become unstable as the RF 

increases.  

 

4.1.4.4. Collision Cell 

In addition to being an ion guide, q2 can be used as a collision cell to perform tandem 

mass spectrometry analysis (MS/MS). During MS/MS experiments, precursor ions are selected 

in Q1 and are allowed to fragment into smaller fragment ions (product ions) in q2. This is 

accomplished by introducing an inert gas (nitrogen or argon) into q2 at a high enough pressure 

such that gas-phase ions entering q2 will undergo collisions with the inert gas. The pressure 

introduced into q2 of the APCI-MS/MS used in this experiment is approximately 8 mTorr. 

Since collisions with inert gas can cause product ions to scatter away from the z-axis, RF 

voltages applied to q2 quadrupole help focus ions back towards the center of the quadrupole 

minimizing product-ion losses.  
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Similar to the previous discussion regarding gas-phase ion motion inside the 

quadrupoles, the focus of this project is not to describe the physical principals behind gas-phase 

fragmentation upon collision with an inert gas in detail. However, it is understood that during 

collision events, a portion of the gas-phase ion kinetic energy (½ mν2) is converted to internal 

energy (Shukla and Futrell, 2000 and de Hoffmann and Stroobant, 2007). The amount of kinetic 

energy that can be converted to internal energy in a single collision event is described briefly in 

Appendix B. It is this conversion that drives the fragmentation of precursor ions to product 

ions. Additionally, the kinetic energy gained by gas-phase ions is related to the potential energy 

(zeV) available in the electric fields in the mass spectrometer (Watson and Sparkman, 2007). 

The equation describing this relationship can be found in Appendix B (Equation B.1). 

Essentially, Equation B.1 shows that increasing the potential difference causes an increase in 

gas-phase ion kinetic energy. As a result, more kinetic energy is available to convert to internal 

energy during collision events, which ultimately affects the degree of fragmentation of 

precursor ions.  

Additionally, the degree of fragmentation depends on the potential energy (collision 

energy) experienced by the precursor ion before it enters q2. Collision energy (CE) is expressed 

in electron volts (eV) units and can be adjusted on the APCI-MS/MS. The APCI-MS/MS can 

supply 5 to 40 eV to a precursor ion during MS/MS experiments. Appendix B briefly describes 

the relationship between CE and the amount of energy that can be converted to internal energy. 

Chiefly, increasing the CE voltage setting on the APCI-MS/MS causes an increase in gas-phase 

ion kinetic energy and increase in the amount of internal energy.  

In this project, MS/MS experiments were carried out using a CE setting of 10 eV. This 

setting was selected since intact protonated molecules or adducts could not be identified in full 
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scan mass spectra due to extensive fragmentation. Since 1 eV is equal to 96.48 kJ mol-1, an 

APCI-MS/MS setting of 10 CE may not be sufficient at fragmenting a precursor-ion after a 

single collision. This notion is valid when considering the center of mass equation (Equation 

B.2) in Appendix B and the energy required to break carbon – carbon bonds (bond energy ~ 

350 kJ mol-1), carbon – oxygen bonds (bond energy ~ 350 kJ mol-1) and oxygen – oxygen 

bonds (bond energy ~ 188 kJ mol-1) (Bach et al., 1996). In this case, multiple collisions can 

increase the internal energy and further drive precursor-ion fragmentation (Douglas, 1998). The 

RF capability of q2 can promote multiple collisions within q2 by reducing the dispersion of 

precursor-ions caused by collision events and focusing the ions towards the center of the 

quadrupoles. 

 

4.1.5. Full and Tandem Mass Spectrometry Scan Modes 

Tandem mass spectrometry (MS/MS) helps provide structural information for a 

precursor ion of interest. There are numerous different MS/MS experimental modes for the 

APCI-MS/MS. Table 4.1 summarizes the different MS/MS modes while Figure 4.7 provides a 

conceptual diagram for MS/MS experiments. 
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Analysis mode Function of Q1 Function of q2 Function of Q3  

Full Scan Mass analyzer 

 

Stabilize ions Stabilizes ions Overall scan 
without any 
collisions 

Product-ion scan Selects ion Fragments 
selected ion 

Mass analyzer Fragmentation 
pattern for a 
specific ion 

Neutral-loss scan 

(NLS) 

Mass analyzer Fragments 
selected ion 

Mass analyzer 

Offset by a 
specific value 
from Q1 

Searching for 
molecules with 
specific mass loss 

Selected reaction 
monitoring 

(SRM) 

Selects precursor 
ion(s) 

Fragments 
precursor ion(s) 

Selects product 
ion(s) 

Monitoring a 
selected ion pair 

Selected ion 
monitoring 

(SIM) 

Selects precursor 
ion(s) 

Stabilizes ion(s) Stabilizes ion(s) Monitoring a 
selected ion 

[Watson and Sparkman, 2007] 

 

Table 4.1: Summary of APCI-MS/MS analysis modes used in the experiment 
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Full scan mode analysis is used to acquire an overall qualitative scan for a given range 

of m/z values. In general this spectrum produces intact ions since there are minimal collisions 

with neutral gas molecules to induce fragmentation. Once gas-phase ions are transmitted 

through q0, Q1 is set to scan a range of m/z ions (10 – 300) while q2 and Q3 are used as ion 

guides to stabilize gas-phase ion motion as they are transferred to and counted by the detector 

(CEM). 

Select 

5. Selected Ion Monitoring Mode 

Q1 Q3 q2 

Scan 

Select 
Fragment 

Scan 

Scan 
m/z = x 

Scan 
m/z = x - a Fragment 

Select Fragment 
Select 

1. Full Scan Mode 

2. Product Ion  Scan Mode 

3. Neutral Loss Scan Mode 

4. Selected Reaction  Monitoring Mode 

Transmit 

Transmit 

Figure 4.7: Conceptual diagram of different MS/MS experimental modes for the APCI-MS/MS 
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The full scan analysis mode can serve as a screening tool to determine ionization schemes and 

determine what ions to focus on for future mass spectrometry analysis. Figure 4.8 (a) shows an 

example of a spectrum acquired in the full scan analysis mode.  

 

 

In contrast to full scan mode analysis, product-ion scan mode analysis is an MS/MS 

analysis mode where structural diagnostic information for a precursor ion can be obtained. As 

opposed to the full scan mode analysis only an ion with a specific m/z ratio is selected in Q1. 

The precursor ion is allowed to pass into q2, which act as a collision cell. In q2 of the APCI-

MS/MS used in this project, the precursor ion collides with nitrogen molecules to produce 

smaller product ions.  The resultant product ions are then analyzed by Q3, which is set to scan 

over a specific range (de Hoffmann, 1996). Structural information on the precursor ion may be 

obtained by examining the product ions produced in the collision cell. Figure 4.8 (b) depicts an 

example of a product-ion scan mass spectrum obtained during this project.  
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Figure 4.8: Example of spectra acquired using (+) APCI-MS/MS. Figure (a) represents a full 
scan mass spectrum acquired by setting the APCI-MS/MS to scan m/z ranges 10 – 300 while (b) 
represents a MS/MS spectrum illustrating the fragment ions of m/z 187 during a product-ion 
scan.   
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Comparatively, the neutral-loss scan (NLS) mode analysis can be used as a diagnostic 

tool like the product-ion scan mode analysis. However, this mode provides a convenient way to 

detect precursor ions that expel a common neutral fragment during collision events in the 

collision cell. To acquire a spectrum in this analysis mode, Q1 and Q3 are scanned at the same 

rate (de Hoffmann and Stroobant, 2007, and Watson and Sparkman, 2007). However, Q3 is 

offset by some fixed m/z (m/z = x – a) value in comparison to Q1 (m/z = x). Detection only 

occurs if a precursor ion exhibits a specific mass loss in the collision cell. For example, alcohols 

can be detected by a neutral loss of water (18 u). This analysis mode can offer a high degree of 

selectivity in comparison to a full scan mode analysis since only precursor ions with a specified 

mass loss will be detected and recorded.  

Selected reaction monitoring (SRM) analysis mode is one of the most widely used 

modes in tandem mass spectrometry. This technique monitors the ion signal associated with the 

transition between a specific precursor and product ion (ion pair) during collision studies. This 

technique is usually performed after a product-ion scan since knowledge of product ions formed 

from a particular precursor ion is needed. During this analysis mode, a precursor ion is selected 

by Q1, allowed to fragment in q2, and the corresponding product ion is selected by Q3. Ions 

selected by Q1 are only detected if it produces a product ion selected by Q3. Unlike the other 

tandem mass spectrometry analysis modes discussed above, both Q1 and Q3 are not used for 

scanning although Q3 can be set for multiple ions. Additionally, the absence of scanning allows 

for users to focus on a precursor and product ion over longer time intervals (de Hoffmann and 

Stroobant, 2007). As a result, increased sensitivity is achieved.  The benefits of this type of 

analysis stem from the fact that multiple ion pairs can be analyzed simultaneously for long 

periods of time.     
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 Lastly, selected ion monitoring (SIM) analysis mode is analogous to SRM analysis 

mode with the exception that SIM analysis mode detects target precursor ions. Precursor ions 

are selected in Q1 and allowed to transmit through q2 and Q3. Similar to SRM analysis mode, 

sensitivity is achieved since the instrument can focus on select precursor ions as opposed to an 

array of precursor ions like full scan analysis mode. Additionally, multiple precursor ions can 

be selected by Q1 and monitored simultaneously for longer durations.    

4.1.6. Utility of Neutral Loss Scan Analysis (NLS)  

One of the most useful methods for organic peroxide detection involved observing 

losses of 34 u (H2O2) during product-ion scan analysis. This loss was observed for organic 

peroxide compounds containing a hydroperoxy (organic hydroperoxide) or peroxy acid (organic 

peroxy acid) functional group. Since this loss was indicated as being characteristic for organic 

hydroperoxides and peroxy acids (Baker et al., 2001, Reinnig et al., 2008 and Reinnig et al., 

2009), it was expected that selected detection for these compounds could be achieved by 

utilizing the NLS analysis mode of the (+) APCI-MS/MS. This analysis mode could be used as 

a “pre-screening” tool to isolate m/z ion signals representing organic hydroperoxides and 

peroxy acids.  

Expected benefits of this analysis mode include a reduction in instrumental analysis 

time provided that there is prior knowledge about the types of functional groups present during 

the project. Prior knowledge circumvents performing product-ion scan analyses on all observed 

ion signals in the full scan mass spectrum. This would be imperative during ozonolysis 

experiments given the diverse types of oxidation products (i.e. carboxylic acids, ketones, 

aldehydes, etc.) formed during β-pinene/ozonolysis experiments.   
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Despite these expected benefits, a review of scientific literature showed that this mode 

was mainly used for qualitatively screening biological compounds (de Hoffmann and Stroobant, 

2007). In the atmospheric science literature, only a few studies capitalized on the benefits of the 

NLS analysis mode. Dron et al., (2007) described using NLS analyses to screen for carboxylic 

acids in complex SOA by searching for neutral losses of methanol (32 u) after derivatization 

with boron trifluoride in a 14% methanol solution. Additionally, Williams and Perreault (2000) 

utilized NLS analysis to probe for neutral losses of nitrogen oxide (30 u) to selectively detect 

nitrated polycyclic aromatic compounds in a laboratory mixture of poly aromatic compounds.  

Aside from these two studies, no other mass spectrometry application for SOA 

characterization has taken advantage of this analysis mode. However, it was apparent during 

this project that there could be wider applications for this analysis mode in atmospheric 

chemistry research as it was found to be useful for selective organic peroxide detection.  
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5. Ozonolysis Mechanism and Reaction Pathways 

Since the primary focus was to observe organic peroxide formation during oxidation 

experiments, this project was designed to follow the chemistry facilitated by reactions with O3. 

This chemistry allowed for reactions in the York University smog chamber to be conducted in a 

NOx (NO and NO2) free environment. The general schematic of alkene-ozonolysis is portrayed 

in Figure 5.1 (Finlayson-Pitts and Pitts Jr., 1999). 

 

 

 

The ozonolysis mechanism described by Finlayson-Pitts and Pitts Jr. (1999) is a 

summary of the work done by Criegee (1975). The primary step for ozonolysis is to add across 

the double bond of an alkene to form an energy-rich primary ozonide. The resultant complex is 

unstable and will decompose by cleaving one of the peroxy bonds (O – O) and the carbon-
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Figure 5.1: General Schematic of alkene-ozonolysis adopted from Finlayson-Pitts and Pitts Jr. 
(1999) 
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carbon (C – C) bond. Figure 5.1 shows, that there are two locations, position a and b, where 

bond cleavage can occur. For symmetrical alkenes like ethylene, cleavage of either peroxy bond 

gives the same products. Contrastingly, the peroxy bonds for unsymmetrical alkenes like β-

pinene will preferentially cleave to produce a more substituted intermediate (Finlayson-Pitts 

and Pitts Jr., 1999). Regardless of symmetry, the breakage of the peroxy and carbon-carbon 

bond will yield what is known as a Criegee biradical intermediate (CBI). For endocyclic 

monoterpenes like α-pinene, primary ozonide decomposition produces a CBI with a carbonyl 

oxide moiety and carbonyl functional group (Docherty et al., 2005). On the other hand, 

exocyclic monoterpenes like β-pinene produces a CBI possessing a carbonyl oxide and a 

separate carbonyl. As a result, ozonolysis of exocyclic monoterpenes will produce a CBI with 

one less carbon than the original structure. This can be properly observed in Figure 5.2 (a) and 

(b). 
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Figure 5.2: Formation of Criegee biradical intermediate (CBI) for (a) β- pinene and (b) α- 
pinene  
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Like the primary ozonide, the CBI formed also possesses excess energy. As a result, the 

CBI will undergo two different reaction pathways; stabilization (stable Criegee intermediate 

channel (SCI)) or decomposition (hydroperoxide channel). A simplified mechanism is depicted 

in Figure 5.3. In general, stabilization during monoterpene ozonolysis occurs by colliding with 

components of air such as oxygen (O2) and nitrogen (N2). The resultant complex can react with 

a variety of components such as carbonyls, acids, water and alcohols to form different classes 

of organic peroxides (α-hydroxy, α-alkoxy, and α-acyloxy hydroperoxides) (Docherty et al., 

2005). However, under atmospheric conditions, the stabilized CBI is often dominated by 

reactions with water vapour forming the α-hydroxyhydroperoxide (Kroll and Seinfeld. 2008). 

This source of hydroperoxide formation is of great interest since its formation occurs without 

involving HO2 radicals (Lee et al., 2000). 

 

 

Figure 5.3: General schematic outlining the two reaction pathways for the excited criegee 
biradical intermediate (denoted by *).   
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On the other hand, the hydroperoxide channel results in the production of an unstable 

vinyl hydroperoxide that decomposes to form HO and an alkyl radical (R) (Kroll and Seinfeld, 

2008). Reasonably, the unstable vinyl hydroperoxide should stabilize by reacting with 

components of air (similar to SCI channel). However, there is no evidence to suggest that this 

pathway exists. Notably, the resultant alkyl radical from the hydroperoxide channel can 

undergo reactions with O2 to form an alkyl peroxy radical (RO2) and a hydroperoxide after 

reacting with HO2 radicals. Although organic peroxides can be produced by further reactions of 

the RO2 radical, its production will depend on NOx levels. The competing reactions are shown 

in Reactions 5.1 to 5.3 (Kroll and Seinfeld, 2008). 

RO2 + HO2 → ROOH + O2 Reaction 5.1 

RO2 + NO → RO + NO2 Reaction 5.2a 

RO2 + NO + M → RONO2 + M Reaction 5.2b 

RO2 + NO2 + M ↔ ROONO2 + M Reaction 5.3 

Hydroperoxide formation occurs through Reaction 5.1. However, a NOx concentration 

greater than 100 parts-per-trillion suppresses hydroperoxide (Lee et al., 2000). The RO2 radical 

reacts through Reaction 5.2(a), 5.2(b), and 5.3 forming an alkoxy radical (RO), organic nitrate 

or peroxynitrates, respectively. Of the two reactions, Reaction 5.2(a) is believed to dominate 

forming an RO radical, whereas Reaction 5.2(b) accounts for < 25% of Reaction 5.2 (Kroll and 

Seinfeld, 2008). Although Reaction 5.3 forms peroxynitrates, these compounds thermally 

dissociate in the particle phase forming back the RO2 radical, which can form hydroperoxides 
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through reactions with HO2 (Kroll and Seinfeld, 2008). A modified diagram adopted from Kroll 

and Seinfeld (2008) portrays a simplified mechanism for the fate of RO2 radicals starting with 

VOC oxidation (Figure 5.4). Regardless of the reaction pathway for the formed CBI, organic 

peroxides are expected to be a product during alkene-ozonolysis.  
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Figure 5.4: Simplified schematic illustrating the pathways for forming peroxynitrate, 
hydroperoxide and organic nitrate products through the oxidation of VOC by HO radicals and 
O3. Diagram was adopted and modified from Kroll and Seinfeld (2008). 
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6. Experimental Design for Organic Peroxide Standard Analysis and β-

Pinene Ozonolysis Experiments 

6.1. Organic Peroxide Standard Introduction  

 Simple organic peroxides were purchased (Sigma-Aldrich) to observe the gas-phase ion-

molecule chemistry of the organic peroxide when protonated water or methanol clusters were 

used as an ionization reagent.  The organic peroxides used in this experiment can be found in 

Table 6.1 and their chemical structures can be found in Figure 6.1. These peroxides were 

selected, as much as possible, to represent different classes of organic peroxides. 

 

 

Name of Compound Molecular Formula Molar Mass                
(g mol-1) 

Organic 
Peroxide class 

tert-butyl hydroperoxide (CH3)3COOH 90 hydroperoxide 

tert-butyl peroxyacetate (CH3)3COOC(O)CH3 132 peroxy ester 

Cumene hydroperoxide C6H5C(CH3)2OOH 152 hydroperoxide 

Peroxyacetic acid CH3C(O)OOH 76 peroxy acid 

di-tert-butyl peroxide (CH3)3COOC(CH3)3 146 dialkylperoxide 

 

Table 6.1: Organic peroxides analyzed by the APCI-MS/MS 
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Organic peroxides were analyzed neat or a 10% volume/volume (v/v) was prepared 

using either distilled water or methanol (Sigma-Aldrich) as a solvent. Each type of standard 

preparation was continuously introduced to the APCI-MS/MS through the use of a 50 microliter 

(µL) syringe needle (Hamilton Company) mounted onto a syringe pump (Harvard Apparatus, 

Model 11 Plus) operating at 0.5 microliter per minute (µL min-1). Standard preparation entered 

into the APCI-MS/MS with the aid of a purified air stream (Aadco Instruments Inc.). Purified 

air stream’s flow was set to 5 Liter per minute (L min-1) and was controlled through the use of a 

mass flow controller (MFC).  An overall schematic showing standard preparation introduction 

is depicted in Figure 6.2. Since some of the standards were light sensitive, the standards and 

experimental set up were protected from light to prevent decomposition. The standards used 

had sufficient volatility for the output of the airflow to contain some of the standard in its gas 

form. Purified air containing the standard in its gas form was swept into a 5 L 3-neck round 

Figure 6.1: Chemical structure for organic peroxides analyzed by (+) APCI-MS/MS 
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bottom flask for continuous mixing. A magnetic stirrer was used to promote uniform mixing of 

the standards before chemical ionization. After mixing, standards were introduced to the ion 

source of the APCI-MS/MS where it underwent chemical ionization with either protonated 

water or methanol clusters. Ionization products were detected by the APCI-MS/MS operating in 

the positive-ion mode.  

 

 

 

 

6.2. Introduction of Ionization Reagent to Ion Source  

6.2.1. Selection of Ionization Reagent 

Generally under ambient conditions (+) APCI-MS/MS utilizes protonated water cluster 

to chemically ionize neutral molecules. However, the APCI-MS/MS can easily be set-up to use 

other ionization reagents. Therefore, protonated methanol and its clusters were selected as an 

alternative ionization reagent. This reagent was selected based on the positive results obtained 

for the chemical ionization of selected organic peroxides by Rondeau et al., (2003).  
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!
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 0.5µL/min 

!!
!!!!!! !!
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To dilution flask To ion source 
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Figure 6.2: Experimental design for standard introduction 
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6.2.2. A Comparison of Protonated Water and Methanol Clusters  

Employing different ionization reagents can influence the ion-molecule chemistry 

occurring in the ion source. The formation of protonated water clusters from ambient air was 

discussed in Section 4.1.1. Protonated methanol clusters can form in the ion source through a 

proton transfer reaction occurring between protonated water clusters and neutral methanol 

molecules (Reaction 6.1). In Reaction 6.1 protonated water clusters act as Brönstead acids 

while the methanol clusters act as Brönstead bases. For this reaction to occur, the PA of 

methanol must be larger than the PA of water. A comparison for the PA of water and methanol 

clusters is shown in Table 6.2. Since the PA difference between methanol and water is almost 

70 kJ mol-1, this condition is met. 

(H2O)mH+ + (CH3OH)n → ((CH3OH)nH)+
  + (H2O)m Reaction 6.1 

 

Size (n) Gas Phase  

Proton Affinity (kJ mol-1) 

Water a 

Gas Phase  

Proton Affinity (kJ mol-1) 

Methanol b 

1 696 766 

2 828 879 

3 884 937 

4 915 962 

a [Kawai et al., 2003] 

b [Bernstein, E.R., 1996] 

 

 
Table 6.2: Proton affinities for n size clusters of water and methanol   
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6.2.3. Introduction of the Ionization Reagent into the Ion Source 

Different techniques were utilized to introduce either ionization reagent (water or 

methanol) into the ion source. Various approaches were performed to evaluate the impact of 

changing the location of the ionization reagent source on gas-phase proton transfer from the 

protonated reagent ions to the neutral standards.  

 

6.2.3.1. Introduction of Ionization Reagent using a Direct Method 

Figure 6.3 (a) shows a conceptual diagram for the introduction of purified air into the 

ion source. Purified air was used since it contained traces of water to use as an ionization 

reagent. However, introducing methanol into the ion source required injecting it into the 

purified air stream. This was accomplished by changing the experimental set-up depicted in 

Figure 6.3 (a) to include a syringe pump apparatus capable of dispensing 0.1 µL min-1 to 5.0 µL 

min-1 of methanol into the purified air stream (Figure 6.3 (b)). Since the experimental set-up for 

methanol differed in comparison to the experimental set-up depicted in Figure 6.3 (a), 

additional experiments were repeated by replacing methanol with distilled water for future 

comparative analysis.  
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6.2.3.2. Introduction using the Double Syringe Pump Method 

Since Figure 6.3 (a) and (b) portrayed an experimental set up where standard and 

ionization reagent introduction into the ion source were separate, an additional experimental set 

up was designed to allow ionization reagent and standards to mix before entering the ion source 

(Figure 6.4). This was accomplished by modifying the experimental set-up described by Figure 

6.3 (b) to include two syringe pumps operating at a range of flow rates (0.1 µL min-1 to 5.0 µL 

min-1) and a 5 L 3-neck round bottom flask. To ensure that the vapour pressure of the ionization 

reagent was not being exceeded, the calculation shown in Appendix C was used to determine 

the maximum syringe pump flow allowance. 
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Purified airflow  MFC!

Controlled flow at 5 L/min 

Standard Introduction 

(b) 

(a) 
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Ion Source 
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Purified airflow  
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!!!!
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 0.1µL/min to 5 µL/min  

Standard Introduction 

Figure 6.3: Experimental set-up for ionization reagent introduction. (a) Conceptual diagram 
where water vapour from purified air was introduced directly into the ion source. The 
experimental set-up depicted by (b) shows how methanol vapours were introduced into a stream 
of purified air before entering the ion source. 
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6.3. Ionization of the Standards using Protonated Water Clusters 

 To evaluate the ability of (+) APCI-MS/MS to ionize organic peroxide standards with 

protonated water clusters, the standards were either injected neat or a 10% v/v diluted standard 

in water into a purified air stream or by injections of distilled water using the methods described 

in Section 6.3.3. For organic peroxide detection, the following reactions were hypothesized to 

occur in the ion source: 

(H2O)H+ + R1OOR2  → H+•R1OOR2 + H2O                                                                Reaction 6.2 

(H2O)H+ + R1OOR2 → (H2O)H+• R1OOR2                                                                  Reaction 6.3                          

(H2O)nH+ + R1OOR2 → (H2O)nH+• R1OOR2                                                               Reaction 6.4 

Equations 6.2 to 6.4 appeared to be a reasonable ionization scheme since the PA of the selected 

organic peroxides were generally higher than the PA of water. Table 6.3 and Table 6.2 show the 
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Figure 6.4: Experimental set-up for the double syringe pump method 
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PA of the selected organic peroxides and water and its clusters, respectively. PA values were 

not available for all organic peroxides used in this experiment. For those organic peroxides 

values were estimated from known organic compounds with similar structure. 

 

 

Molecule Proton Affinity (kJ mol-1) 

tert-butyl hydroperoxide 803a 

tert-butyl peroxyacetate 783b 

Cumene hydroperoxide 791c 

Peroxyacetic acid > 696d 

di-tert-butyl peroxide 791e 

a Estimated using tert-butyl alcohol as reference [Rondeau et al., 2003]                                                                                                                                                                              

b [Hastie et al., 2010] 

c Estimated using dialkyl peroxide as reference [Rondeau et al., 2003] 

d Reasonably deduced to be larger than the PA of water based on reported PA values for benzene (750 kJ/mol), 
toluene (784 kJ/mol), benzoic acid (821 kJ/mol), phenylamine (882 kJ/mol) and phenol (817 kJ/mol) in the NIST 
Chemistry WebBook . 

e [Rondeau et al., 2003] 

 

 

6.4. Ionization with Protonated Methanol Clusters 

In addition to water, methanol was selected as a possible ionization reagent for organic 

peroxides. The formation of protonated methanol clusters from neutral methanol molecules 

using protonated water clusters was discussed in Section 6.2.2. The ion-molecule chemistry of 

Table 6.3: Proton affinities for organic peroxides used during the experiment  
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organic peroxide standards with protonated methanol clusters was evaluated using the standards 

neat or a 10% v/v standard prepared in water or methanol. Standards were injected in the same 

manner discussed in Section 6.1. Methanol was introduced into the ion source through the 

methods discussed in Section 6.3.3. For organic peroxide detection, the following ionization 

scheme was believed to occur in the ion source: 

(CH3OH)H+ + R1OOR2 → H+•R1OOR2 + CH3OH                                            Reaction 6.6 

CH3OH)H+ + R1OOR2 → (CH3OH)H+• R1OOR2                                                        Reaction 6.7                              

(CH3OH)nH+ + R1OOR2 → (CH3OH)nH+• R1OOR2                                                     Reaction 6.8 

Similar to the ionization scheme described in Section 6.4, this ionization scheme was logical 

since the PA of methanol was lower than the PA of the organic peroxide standards used in this 

experiment. The PA of methanol and its clusters can be found in Table 6.2. 

 

6.5. Smog Chamber Experiments 

6.5.1. Smog Chamber Description 

β-Pinene ozonolysis experiments were performed in an 8 m3 cylindrical smog chamber 

at York University. The smog chamber consisted of a Teflon bag with two Teflon coated 

aluminum endplates. To promote mixing during ozonolysis experiments, a fan was located at 

the input end of the smog chamber. The Teflon bag and endplates were encased by a mobile 

frame covered with Mylar to prevent radiation from entering or leaving the smog chamber 

during experiments. Although the mobile frame was lined with 24 ultraviolet lights with a 

radiation output range of 350 to 400 nm (Philips F40L, 40 Watt), these lights were not used 



 
 

 50 

during ozonolysis experiments. A humidity and temperature meter (Omegatte HH311) attached 

to the chamber was used to monitor the temperature and humidity during experiments. A 

general schematic of the smog chamber is depicted in Figure 6.5  

 

 

 

 

6.5.2. Smog Chamber Experimental Set-up 

To ensure the smog chamber was free from organic products formed during previous 

experiments, background scans (shown in Figure 6.6) of the smog chamber were acquired using 

(+) APCI-MS/MS (operating parameters are listed in Appendix D). Before smog chamber 

experiments were conducted, the chamber was flushed for 24 hours with 30 L min-1 of purified 

air.  

During experiments, smog chamber air was pulled into the ion source at a rate of 2 L 

min-1 using a pump and a mass flow meter (MFM). Additionally, an ozone (O3) analyzer (UV 

Photometric, Thermo Environmental Inc.) was attached to the output end of the chamber to 

monitor the O3 concentration. The removal of chamber air for APCI-MS/MS and ozone 

Figure 6.5: Schematic for the York University smog chamber 
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concentration analysis was balanced with an input of purified air. Once the chamber was 

determined to be clean, 23 µL β-pinene was injected into the chamber using a 25 µL syringe 

(Hamilton Company) to achieve a concentration of 0.4 part-per-million (ppm). The calculation 

for β-pinene volume injection is outlined in Appendix E. After injection, β-pinene was allowed 

to mix for one hour. Following mixing, O3 was injected into the chamber to achieve a 

concentration of 1 ppm. Calculations for O3 concentration, operating parameters for the O3 

generator, and a summary of the experimental conditions for all smog chamber studies can be 

found in Appendix F. The contents of the chamber were allowed to mix until a stable total ion 

count (TIC) signal was observed by the APCI-MS/MS. A stable TIC signal was usually 

obtained after contents of the chamber were mixed for 40 minutes.  

 

 

 During ozonolysis experiments, HO radical production was possible if the CBI formed 

decomposed through the hydroperoxide channel as described in Section 5.0. Since an HO 

scavenger was not used in this project to supress HO radical formation, it was assumed that β-

pinene oxidation products were strictly formed from oxidation with ozone.  
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Figure 6.6: Example of a typical background spectrum acquired with (+) APCI-MS/MS. Ion 
signals m/z 37 and 55 represents (H2O)2H+ and (H2O)3H+, respectively. 
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6.5.3. Data Acquisition 

6.5.3.1.  Ionization with Protonated Water Clusters 

Smog chamber experiments were initially conducted using water vapour present in 

purified air as a reagent gas.  The introduction of purified air into the ion source has been 

discussed in previous sections. Ozonolysis products formed in the chamber underwent chemical 

ionization with protonated water clusters in the ion source. The resultant oxidation products 

were analyzed firstly by acquiring full mass spectra for a range of m/z values (10 – 400). 

Subsequently, the acquired mass spectra were used to select m/z ions of interest for further 

MS/MS studies. Product-ion scans were acquired for selected ions to ascertain the possible 

identity. Moreover, the (+) APCI-MS/MS operated in the neutral-loss scan mode to observe the 

possibility of losing neutral fragments with masses of 18, 32, 34, 46, and 62 u from protonated 

oxidation products.  

 

6.5.3.2. Ionization with Protonated Methanol Clusters 

Similar to organic peroxide standard analysis using protonated water and its clusters, 

methanol was used as an ionization reagent to determine its ability to ionize oxidation products 

during smog chamber studies. Prior to ozonolysis experiments, a 50 µL syringe filled with 

methanol was mounted onto a syringe pump (Harvard Apparatus, Model 11 Plus) and allowed 

to pump methanol into the ion source at a rate of 0.2 µL min-1. The set-up used was previously 

described by Figure 6.3 (b). Ozonolysis experiments commenced in a similar manner to the 

method described in the previous section. Full scan spectra were acquired for a range of m/z 

values (10 – 400) before and after the addition of methanol into the ion source for comparative 

analysis. Product-ion scans for selected precursor ions were acquired to determine if oxidation 
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products from the chamber were ionized with protonated methanol clusters. Additionally, NLS 

analyses were performed to observe which protonated oxidation products could lose neutral 

fragments of 18, 32, 34, 46 and 62 u.  
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7. Results and Discussion 

7.1. Analysis of Commercially Available Organic Peroxide Standards 

7.1.1. Ionization with Protonated Water Clusters 

Prior to β-pinene ozonolysis experiments, commercially available organic peroxides 

were analyzed to observe their gas-phase reaction towards either water or methanol as an 

ionization reagent in the ion source of the (+) APCI-MS/MS. Table 7.1 lists expected m/z 

values based on the predicted ion-molecule chemistry described in Section 6.3 for organic 

peroxide standards ionized using protonated water and its clusters.  

 

 

Name of Compound Molar Mass (g mol-1) Expected m/z Ion Signals  

  [M + H]+ [M + H2O + H]+ 

tert-butyl hydroperoxide 90 91 109 

tert-butyl peroxyacetate 132 133 151 

Cumene hydroperoxide 152 153 171 

Peroxyacetic acid 76 77 95 

di-tert-butyl peroxide 146 147 165 

 

 

 

Table 7.1 List of expected m/z ion signals for organic peroxide standards chemically 
ionized using protonated water and its clusters 
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Additionally, organic peroxide standards were used during MS/MS experiments to 

determine fragmentation pathways and confirm their respective structures. Ultimately, the 

intent of performing MS/MS experiments was to identify commonalities between the spectra of 

all acquired organic peroxides. Full scan mass spectra for all organic peroxides are depicted in 

Figure 7.1 (a) to (e). Most of the acquired full scan mass spectra were dominated by fragments 

ions with no intact [M + H]+ ions observed in appreciable amounts. Using Table 7.1, no m/z 

values indicating ionization with protonated water and its clusters was observed as expected 

through Reaction 6.2 to 6.4. Instead, most of the organic peroxides analyzed experienced 

fragmentation at their peroxy bond (O – O). For example, the full scan mass spectrum of tert-

butyl hydroperoxide (Figure 7.1 (a)) did not yield m/z 91 and 109 indicative of the [M + H]+ 

and [M + H2O + H]+ ions but was dominated by the fragment ion m/z 73 ((CH3)3CO+) likely 

resulting from a loss of water (H2O) from the [M + H]+ ion. Similarly, tert-butyl peroxyacetate 

and di-tert-butyl peroxide both fragmented at the peroxy bond to produce an ion signal at m/z 

73. Additionally, fragmentation at the peroxy bond was also indicated in the full scan mass 

spectrum of cumene hydroperoxide by the presence of the m/z 135 ion ((C6H5)(CH3)2CO+).   
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In addition to the major features described above, most standards exhibited unique 

features in their full scan mass spectrum. For instance, a protonated dimer [M + M + H]+ ion 

was observed for tert-butyl hydroperoxide (m/z 181) and tert-butyl peroxyacetate (m/z 265) 

Figure 7.1: Full scan mass spectra for all organic peroxides acquired by (+) APCI-MS/MS. (a) 
tert-butyl hydroperoxide, (b) peracetic acid, (c) cumene hydroperoxide, (d) tert-butyl 
peroxyacetate, and (e) di-tert-butyl peroxide 
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resulting from the high pressure conditions in the ion source of the APCI-MS/MS. Additionally, 

unlike the other standards analyzed di-tert-butyl peroxide was capable of ionizing in the ion 

source to form a molecular ion ([M]+, m/z 146). This is possible because of its low ionization 

energy value 8.78 eV in comparison to the components of air (oxygen = 12.0697 eV and 

nitrogen = 15.581 eV) (NIST Chemistry WebBook). No information regarding the ionization of 

peracetic acid could be ascertained using the full scan mass spectrum since it was dominated by 

m/z ion signals that were attributed to acetic acid. 

Lastly, cumene hydroperoxide exhibited a loss of 32 u likely resulting from a loss of 

molecular oxygen (O2) from the [M + H]+ ion. Since this type of loss was not expected, this 

standard was investigated further. Although there was no information for the PA of cumene 

hydroperoxide, it was assumed that protonation of this molecule would occur at the 

hydroperoxy (-OOH) functional group. This assumption was established based on the results of 

a similar experiment from Reinnig et al., (2009) where cumene hydroperoxide protonation was 

achieved using (+) APCI-MS/MS with an ion trap. Product-ion scans from this study revealed 

the loss of hydrogen peroxide (H2O2, 34 u), which was deemed only possible if protonation 

occurred at the hydroperoxy moiety. To rationalize the loss of 32 u, it was suggested that 

protonation must occur within the ring of the molecule as oppose to the hydroperoxy moiety 

(Rondeau et al., 2003). Figure 7.2 outlines the possible mechanism for rationalizing the loss of 

32 u from the protonated cumene hydroperoxide ion (Rondeau et al., 2003). 
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As shown by the results from this section, the main common feature from all organic 

peroxides analyzed by (+) APCI-MS/MS was that spectra were dominated by smaller fragment 

ions and lacked appreciable amounts of [M + H]+ ions. It was apparent during this aspect of the 

experiment that ionizing organic peroxides with protonated water clusters was not a selective 

ionization technique. In short, minimal information about the neutral molecule was obtained by 

utilizing the full scan mode of the APCI-MS/MS under the given conditions.  

 

7.1.1.1. Neutral-Loss Scan Analysis 

This analysis mode was utilized since it provided a great deal of selectivity in 

comparison to the full scan mode analysis. The APCI-MS/MS was set to detect a range of m/z 

ions capable of losing a neutral mass of 34 u. Organic peroxides containing a hydroxyperoxy 

functional group are known to lose 34 u, attributed to a loss of hydrogen peroxide (H2O2) from 

the [M + H]+ ion during MS/MS studies (Reinnig et al., 2009, Reinnig et al., 2008, and Baker et 

al., 2001). The resulting loss is possible as long as protonation occurs at the hydroperoxy 

functional group moiety of the peroxide. Figure 7.3 depicts the general structure for four classes 

of organic peroxides. Of the four structures, hydroperoxides and peroxy acids contain a 

Figure 7.2: Mechanism proposed by Rondeau et al., (2003) for the elimination of O2 from 
protonated cumene hydroperoxide 
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hydroperoxy moiety within its structure. A loss of H2O2 can be rationalized from these two 

organic peroxide classes as long as protonation occurs at the hydroperoxy moiety. 

Contrastingly, the general structure representing peroxy hemiacetals and peroxy esters cannot 

explain a loss of H2O2 since their structure lacks a hydroperoxy moiety. Peroxy hemiacetals are 

discussed in greater detail in Section 9.1.3. As a result, a loss of H2O2 is limited to organic 

hydroperoxides and peroxy acids. 

 

 

Out of the five selected organic peroxides standards used in this experiment, tert-butyl 

hydroperoxide, peracetic acid and cumene hydroperoxide were the only standards that 

possessed a hydroperoxy functional group within its structure (Figure 6.1). Therefore these 

three standards were analyzed further using NLS analysis. Since NLS analysis produces a mass 
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Figure 7.3: General structures for different classes of organic peroxides. While R1 groups can 
indicate a hydrogen atom or organic constituent, R attached to oxygen can only indicate an 
organic constituent. 
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spectrum of all precursor ions exhibiting a specified mass loss, the intent was to see if ion 

signals representing [M + H]+ could be observed for the three organic peroxide standards 

possessing a hydroperoxy functional group based on a specified mass loss of 34 u from the [M 

+ H]+ ion. Figure 7.4 (a) to (c) represents the results for tert-butyl hydroperoxide, peracetic acid 

and cumene hydroperoxide using NLS analysis mode. The [M + H]+ ion signal was present in 

all three NLS mass spectra. These ion signals were m/z 91 for tert-butyl hydroperoxide, m/z 77 

for peracetic acid and m/z 153 for cumene hydroperoxide. This was different compared to the 

full scan mass spectra for tert-butyl hydroperoxide, peracetic acid and cumene hydroperoxide 

where [M + H]+ ion signals were not observed (Figure 7.1 (a) to (c)). The [M + H]+ ion was 

easily observed in NLS analysis mode compared to full scan mode because NLS analysis mode 

only displayed ion signals exhibiting a mass loss of 34 u during MS/MS experiments while full 

scan mode displayed all ions formed inside the ion source of the APCI. Given the increased 

sensitivity for [M + H]+ ions, NLS analysis mode allowed for the confirmation of [M + H]+ ions 

in the mass spectra for the three organic peroxide standards analyzed. Furthermore, this analysis 

mode confirmed the ion-molecule reaction previously mentioned in Section 6.4 describing the 

formation of [M + H]+ ions using protonated water clusters as an ionization reagent. 

Aside from observing [M + H]+ ions in NLS mass spectrum, additional comments could 

be made regarding the acquired NLS mass spectra for tert-butyl hydroperoxide and cumene 

hydroperoxide. For instance, the NLS mass spectra for tert-butyl hydroperoxide and cumene 

hydroperoxide were dominated by precursor ions that were smaller than the molecular weight 

of the standard. Tert-butyl hydroperoxide had m/z ion signals less than 80 while cumene 

hydroperoxide had m/z ion signals less than 143, which were capable of losing 34 u during 
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MS/MS experiments. This most likely indicated that aside from [M + H]+ ions, smaller 

fragmented ions formed in the APCI ion source could lose 34 u during MS/MS experiments.  

Altogether, there was an advantage to using NLS analysis mode over the full scan 

analysis mode since [M + H]+ ions could easily be observed for organic peroxide standards 

containing a hydroperoxy functional group. Given the higher degree of sensitivity and ability of 

[M + H]+ ions for organic hydroperoxides and organic peroxy acids to lose 34 u during MS/MS 

experiments, NLS analysis mode was established as a potentially valuable “fingerprinting” 

technique to target compounds containing a hydroperoxy functional group during future smog 

chamber experiments.  

 

 

 

Figure 7.4: NLS for (a) tert-butyl hydroperoxide, (b) peracetic acid and (c) cumene 
hydroperoxide using protonated water and its cluster as an ionization reagent 
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7.1.1.2. Analysis of 10% v/v Standards 

Reaction 7.1 describes the formation of protonated dimers. Since protonated dimers ([M 

+ M + H]+) were apparent for tert-butyl hydroperoxide (m/z 181) and di-tert butyl 

peroxyacetate (m/z 265) (Figure 7.1 (a) and (d)) these standards were analyzed once more by 

preparing a 10% v/v standard in water or methanol. This was done to reduce the dimer signal 

during full scan analysis. The remaining organic peroxide standards were diluted in the same 

manner for consistency and comparative analysis despite the lack of [M + M + H]+ ions in their 

respective full scan mass spectra (Figure 7.1 (b), (c) and (e)). Nevertheless, the dimer signal 

was deemed not useful in this experiment since self-reactions would not be appreciable at 

atmospheric concentrations.  

MH+ + M → (2M + H)+ Reaction 7.1 

Although the results are not displayed, the full scan mass spectra for organic peroxide 

standards diluted with water were similar to the full scan mass spectra obtained when the 

standards were injected neat (Figure 7.1 (a) to (e)). The full scan mass spectra for standards 

diluted with water were dominated by fragmented ions. However, a difference in the [M + M + 

H]+/ [M + H]+ ratio for tert-butyl hydroperoxide and tert-butyl peroxyacetate was observed 

when comparing the full scan mass spectrum of neat and 10% v/v standards diluted in water. 

Table 7.2 summarizes the calculated [M + M + H]+/ [M + H]+ ratio for tert-butyl hydroperoxide 

and tert-butyl peroxyacetate. A decrease in the [M + M + H]+/ [M + H]+ ratio observed for the 

diluted tert-butyl hydroperoxide and tert-butyl peroxyacetate standards indicated that dimer 

formation in the APCI ion source was reduced. 
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Name of Compound Neat Standard Injection 

[M + M + H]+/ [M + H]+ 

10% v/v Standard Injection 

 [M + M + H]+/ [M + H]+ 

tert-butyl hydroperoxide 326.6 5.7 

tert-butyl peroxyacetate 494.1 81.7 

 

 Additionally, methanol was used as a diluent to try and reduce the formation of 

protonated dimers inside the APCI ion source during analysis of tert-butyl hydroperoxide and 

di-tert butyl peroxyacetate. Aside from being a commonly used solvent in analytical chemistry, 

the selection of this diluent was previously described in Section 6.3.1. Since methanol has a 

higher PA than water in the gas-phase, protonated methanol and its clusters formed inside the 

ion source as described by Reaction 6.1. As a result, organic peroxide standards analyzed 

underwent ion-molecule reactions with protonated methanol and its clusters as described by 

Reactions 6.6 to 6.8. Full scan mass spectra for organic peroxides dissolved in methanol are 

portrayed in Figure 7.5 (a) to (e) while Table 7.3 displays a list of expected m/z ion signals 

based on chemical ionization with protonated methanol and its clusters. To distinguish results in 

this project, mass spectra acquired using water as an ionization reagent are shown in black 

while mass spectra acquired using methanol as an ionization reagent are shown in blue. 

Although the aspect of this experiment was to remedy the formation of protonated dimers ([M + 

M + H]+), the formation of protonated methanol dimers (([2(CH3OH) + H]+), m/z 65) was 

apparent in all full scan mass spectra except tert-butyl peroxyacetate (Figure 7.5 (c)) when 

methanol was used as a diluent. Its prominence indicated that the concentration of methanol 

Table 7.2: A comparison of [M + M + H]+ / [M + H]+ ratios for select organic peroxide 
standards  
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was high inside the APCI ion source. This suggested that methanol concentrations needed to be 

reduced in the ion source. Additional experiments varying the concentration of methanol were 

performed and described in Section 7.1.5.   

 

 

Name of Compound Molar Mass (g mol-1) Expected m/z Ion Signals 

  [M + H]+ [M + CH3OH + H]+ 

tert-butyl hydroperoxide 90 91 123 

tert-butyl peroxyacetate 132 133 165 

Cumene hydroperoxide 152 153 185 

Peroxyacetic acid 76 77 109 

di-tert-butyl peroxide 146 147 179 

 

 

 

Table 7.3 List of expected m/z ion signals for organic peroxide standards chemically 
ionized using protonated methanol and its clusters 
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Aside from observing protonated methanol dimers, the protonated dimer ion signal (m/z 

181) was no longer visible in appreciable amounts in the full scan mass spectrum for tert-butyl 
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Figure 7.5: Full scan mass spectra for 10% v/v organic peroxide standards in methanol. (a) 
tert-butyl hydroperoxide, (b) peracetic acid, (c) tert-butyl peroxyacetate, (d) di-tert-butyl 
peroxide and (e) cumene hydroperoxide 
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hydroperoxide in methanol (Figure 7.5 (a)), the protonated dimer ion signal (m/z 265) still 

dominated the full scan mass spectrum for tert-butyl peroxyacetate in methanol (Figure 7.5 (c)). 

The difference observed was most likely attributed to the PA of each species formed in the 

APCI ion source. In the ion source, neutral molecules compete for protons. The neutral 

molecule with the highest PA will undergo proton transfer. The full scan mass spectrum 

displayed in Figure 7.5 (a) showed that the introduction of 10 %v/v tert-butyl hydroperoxide in 

methanol into the APCI ion source yielded ion signals m/z 73, m/z 65 and m/z 123. Ion signal 

m/z 73 came from a loss of water (H2O) from the [M + H]+ ion as discussed in Section 7.1.1. 

However, the appearance of m/z 65 and m/z 123 indicated the formation of protonated methanol 

dimers ([2(CH3OH) + H]+) and adducts ([M + CH3OH + H]+), respectively. The reduced 

relative contribution of m/z 181 ([M + M +H]+) was most likely due to competition for protons 

inside the ion source. Although the PAs for all species were not known, the reduction of m/z 

181 ([M + M +H]+) and appearance of  ([2(CH3OH) + H]+) and ([M + CH3OH + H]+) in the full 

scan mass spectrum indicated that the PA for the two latter species were higher than the PA for 

the tert-butyl hydroperoxide dimer.  

Contrastingly, the protonated dimer ion signal (m/z 265) was still prominent in the full 

scan mass spectrum for tert-butyl peroxyacetate (Figure 7.5 (c)). Unlike the full scan mass 

spectrum for tert-butyl hydroperoxide (Figure 7.5 (a)), the full scan mass spectrum shown in 

Figure 7.5 (c) contained m/z 165 ion signals representing the formation of [M + CH3OH + H]+ 

ions and was deficient in ion signals representing protonated methanol dimers (m/z 65, 

[2(CH3OH) + H]+). The continued prominence of ion signal m/z 265 suggested that tert-butyl 

peroxyacetate dimers had a higher PA than methanol dimers.  
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7.1.2. Ionization with Protonated Methanol Clusters 

While diluting organic peroxide standards with methanol to reduce dimer formation, the 

resultant full scan mass spectra displayed in Figure 7.5 (a) to (d) showed m/z ion signals with a 

mass difference of + 33 u from each standard’s molecular weight. This suggested the formation 

of adduct ions ([M + CH3OH + H]+) and inferred that the ion-molecule reaction described by 

Reaction 6.7 occurred in the APCI ion source. The ion signal representing [M + CH3OH + H]+ 

ions were apparent for tert-butyl hydroperoxide (m/z 123) and di-tert-butyl peroxide (m/z 179) 

whereas peracetic acid (m/z 109) and tert-butyl peroxyacetate (m/z 165) had [M + CH3OH + 

H]+ ion signals that were detected in small abundances. Unlike the full scan mass spectra for 

organic peroxide standards analyzed neat using water as an ionization reagent (Figure 7.1 (a) to 

(e)), the formation of an adduct ion was a common feature for four out of five organic peroxide 

standards diluted with methanol. Furthermore, diluting organic peroxide standards with water 

yielded full scan mass spectra similar to those presented in Figure 7.1 (a) to (e). It appeared that 

the use of methanol as a diluent yielded m/z ion signals that were intact and could be used to 

identify standards in a full scan mass spectrum.  

In light of this observation, the ion-molecule chemistry of methanol with organic 

peroxide standards was investigated further. Product-ion scans were required to validate the 

formation of the adduct ion [M + CH3OH + H]+ in the ion source. These results are discussed in 

Section 7.1.2.1 in greater detail. Initially, methanol and organic peroxide standards were 

introduced into the ion source of the APCI-MS/MS using the double syringe pump method 

described in Section 6.3.3.2. Before standard introduction into the APCI ion source, methanol 

was introduced into the ion source to obtain a full scan mass spectrum. This is shown in Figure 

7.6. The acquired full scan mass spectrum was dominated by protonated methanol dimers 
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[2(CH3OH) + H]+ at m/z 65. Additionally, the observed ion signals at m/z 33 and m/z 51 

represented protonated methanol [CH3OH + H]+ and protonated methanol water cluster 

[CH3OH + H2O + H]+, respectively. The absence of protonated water cluster ions ([(H2O)n + 

H]+ where n = 1, 2, 3, 4) despite the presence of water vapour in the purified air source, 

validated the occurrence of Reaction 6.1 in the ion source. Clearly, the gas-phase proton 

transfer reaction between water and methanol was responsible for the observed predominance 

of protonated methanol dimer, protonated methanol and its water cluster in the full scan mass 

spectrum. 

 

 

 

To further investigate the ion-molecule chemistry of organic peroxide chemical 

ionization with protonated methanol, full scan mass spectra were acquired utilizing the double 

syringe pump method. Figure 7.7 to 7.10 depict the results for four out of five of organic 

peroxide standards. The larger traces illustrated in Figure 7.7 to 7.10 show the total ion count 

(TIC) (the sum of all m/z ion signals) plotted against time. The smaller full scan mass spectra 

for each figure shows the ion count for each detected m/z ion signal averaged over a 2.5 minute 

Figure 7.6: Full scan mass spectrum for pure methanol in the APCI ion source. Ion signal m/z 
33, 51 and 65 represent (CH3OH)H+, (CH3OH)(H2O)H+, and (CH3OH)2H+, respectively.  
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time frame. Full scan mass spectra for cumene hydroperoxide were not acquired since the 10% 

v/v standard did not exhibit any ion signals indicating chemical ionization using protonated 

methanol. 

 During the experiment, the methanol syringe pump was allowed to operate for only half 

of the data acquisition time so the impact of the methanol could be more clearly observed. 

Since the total acquisition time was 5 minutes, the methanol syringe pump was allowed to 

operate during the last 2.5 minutes of the experiment. For the first 2.5 minutes of the 

experiment, the full scan mass spectra shown in black for Figures 7.7 to 7.10 are similar to the 

full scan mass spectra for neat organic peroxide standard analysis shown in Figure 7.1 (a) to (e). 

However, when the methanol pump was operating during the last 2.5 minutes of the 

experiment, the full scan mass spectra appearance for all organic peroxide standards shown in 

black in Figures 7.7 to 7.10 changed in response to the presence of protonated methanol and its 

clusters in the ion source.  This change is portrayed by the full scan mass spectra shown in blue 

for Figures 7.7 to 7.10. Notably, the appearance of a [M + 33]+ ion signal was observed for all 

four organic peroxide standards analyzed. Overall, Figure 7.7 to 7.10 showed that the presence 

of protonated methanol and its clusters in the APCI ion source was responsible for the resultant 

ion signals m/z 123 for tert-butyl hydroperoxide, m/z 179 for di-tert-butyl peroxide, m/z 165 for 

tert-butyl peroxyacetate and m/z 109 for peracetic acid. 
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Figure 7.7: Chemical ionization of peracetic acid with and without methanol inside the ion 
source. The total ion count chromatogram is outlined in red while the vertical orange line 
indicates when the methanol pump was allowed to operate. Full scan mass spectra outlined in 
blue and black represent chemical ionization with and without methanol present inside the ion 
source, respectively.     
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Figure 7.8: Chemical ionization of tert-butyl hydroperoxide with and without methanol inside 
the ion source. The total ion count chromatogram is outlined in red while the vertical orange 
line indicates when the methanol pump was allowed to operate. Full scan mass spectra outlined 
in blue and black represent chemical ionization with and without methanol present inside the 
ion source, respectively.      
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 m/z m/z 

Figure 7.9: Chemical ionization of di-tert-butyl peroxide with and without methanol inside the 
ion source. The total ion count chromatogram is outlined in red while the vertical orange line 
indicates when the methanol pump was allowed to operate. Full scan mass spectra outlined in 
blue and black represent chemical ionization with and without methanol present inside the ion 
source, respectively.     
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Figure 7.10: Chemical ionization of tert-butyl peroxyacetate with and without methanol inside 
the ion source. The total ion count chromatogram is outlined in red while the vertical orange 
line indicates when the methanol pump was allowed to operate. Full scan mass spectra outlined 
in blue and black represent chemical ionization with and without methanol present inside the 
ion source, respectively.  
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7.1.2.1. Product-Ion Scans 

Product-ion scans were acquired to confirm the identity of the products of ionization 

when methanol was introduced into the APCI ion source. Results are portrayed in Figure 7.11 (a) 

to (d). All product-ion scans were acquired at a collision energy of 10 eV. During MS/MS 

studies, a neutral mass loss of 32 u (CH3OH) was observed from the [M + CH3OH + H]+ ion 

signal for tert-butyl hydroperoxide, tert-butyl peroxyacetate, and peracetic acid. A neutral mass 

loss of 32 u as opposed to a mass loss of 33 u was expected since the PA for the three organic 

peroxides was higher than methanol (Table 6.2 and 6.3). Therefore, during MS/MS studies, the 

organic peroxide standards retained the proton (H+) from the protonated methanol ion.  

Contrastingly, product-ion analysis for the [M + CH3OH + H]+ ion signal observed 

during full scan analysis of di-tert-butyl peroxide, did not directly display a neutral mass loss of 

32 u in the resultant MS/MS spectrum (Figure 7.11 (d)). The only ion signal observed in MS/MS 

spectrum was m/z 73. Previous full scans and product-ion scans of the molecular ion ([M]+, m/z 

146) for di-tert-butyl peroxide revealed that m/z 73 was a fragment ion signal attributed to the 

formed ion cleaving at the peroxy bond. Therefore, it was reasonable to assume that the [M + 

33]+ ion signal (m/z 179) was still related to di-tert-butyl peroxide being ionized with protonated 

methanol. Nevertheless, the product-ion scans acquired for the selected organic peroxide 

standards proved that the appearance of ions [M + 33]+ was attributed to gas-phase ionization 

with protonated methanol.  
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7.1.2.2. Neutral-Loss Scan Analysis  

During product-ion scan analysis of the [M + CH3OH + H]+ ion signal for tert-butyl 

hydroperoxide and peracetic acid, ion signals representing [M + CH3OH + H – 32]+ were 

apparent in their MS/MS spectra (Figure 7.11 (a) and (c)). Since the observed ion signal ([M + 

CH3OH + H – 32]+) for tert-butyl hydroperoxide and peracetic acid differed by 1 u from the 

molecular weight of the two organic peroxides standards analyzed respectively, it was assumed 
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Figure 7.11: Product-ion mass spectra for organic peroxides standards using methanol as an 
ionization reagent. (a) Represents tert-butyl hydroperoxide, (b) tert-butyl peroxyacetate, (c) 
peracetic acid and (d) di-tert-butyl peroxide. Product-ion mass spectra were acquired at an APCI-
MS/MS CE setting of 10 eV. Mass losses are shown in purple for clarity 
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that this ion signal represented the protonated precursor ion [M + H]+. Given this assumption, 

NLS analysis was performed for tert-butyl hydroperoxide, peracetic acid and cumene 

hydroperoxide to determine a range of precursor ions capable of losing 34 u. Similar to previous 

NLS analysis using water as an ionization reagent, the intention was to determine if [M + H]+ 

ions formed in the APCI ion source could be detected. Results for tert-butyl hydroperoxide and 

peracetic acid are portrayed in Figure 7.12 (a) and (b). Cumene hydroperoxide did not exhibit [M 

+ H]+ ion signal in its neutral-loss scan. This was consistent with the [M + H]+ ion signal not 

present in previous full scan mass spectrum (Figure 7.5 (e)). Additionally, this observation was 

expected since it was postulated during early full scan analysis experiments that the PA of 

methanol might be larger than the PA for cumene hydroperoxide. On the other hand, neutral-loss 

mass spectrum for tert-butyl hydroperoxide and peracetic acid exhibited an easily observable ion 

signal at m/z 91 and m/z 77 respectively representing the [M + H]+ ion signal. Similar to NLS 

analysis with protonated water, ionization with protonated methanol increased the sensitivity for 

the [M + H]+ ion signal. However, a comparison of NLS scans for tert-butyl hydroperoxide 

revealed that detection of the [M + H]+ ion signal was vastly improved using protonated 

methanol as opposed to protonated water as an ionization reagent (Figure 7.13).   
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In the case of peracetic acid, the relative intensity for the m/z 77 ([M + H]+) ion signal 

decreased when protonated methanol was used in comparison to the results obtained using 

protonated water. However, this relative decrease was caused by the appearance of the m/z 109 

([M + CH3OH + H]+) ion signal. Its presence in the neutral-loss mass spectrum meant that this 

ion lost 34 u from its structure during collision events. Moreover, this was validated by 
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Figure 7.12: NLS mass spectra for 34 u mass loss. (a) Represents tert-butyl hydroperoxide and 
(b) peracetic acid. Protonated methanol was used the ionization reagent. NLS mass spectra were 
acquired at an APCI-MS/MS CE setting of 10 eV. 
  

Figure 7.13: NLS mass spectra for 34 u mass loss using protonated methanol (a) or protonated 
water as an ionization reagent (b) during analysis of tert-butyl hydroperoxide. NLS mass spectra 
were acquired by setting the APCI-MS/MS CE to 10 eV 
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previously acquired product-ion scans by the presence of m/z 75 ion signal ([M + CH3OH + H – 

34]+) in the MS/MS spectrum (Figure 7.11 (b)). Although the primary focus of the project was 

not to study the fragmentation pathway in great detail, some observations were made regarding 

the possibility for a [M + CH3OH + H]+ ion’s ability to lose 34 u. Figure 7.14 shows a 

rudimentary diagram for adduct formation in the ion source. The portrayed schematic shows that 

certain orientations of the protonated methanol ion coupled with hydrogen bonding between 

oxygen and hydrogen could make this loss possible. 

 

 

 

 

Regardless of the ionization reagent used, NLS analysis appeared to be a more selective 

method for detecting organic peroxides containing a hydroperoxy moiety. The acquired MS/MS 

spectra demonstrated the ability to simplify a range of m/z ions based on a characteristic neutral 

fragment loss of 34 u. The advantage of this type of scan would continue to be useful during β-

pinene ozonolysis experiments where m/z ions relating to a specific neutral mass loss could be 

CH3

O

O
O H

CH3

O+H

H

Hydrogen bonding 

Figure 7.14: General schematic rationalizing the loss of 34 u from a protonated adduct with 
methanol. 
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ascertained and studied further. The applications of NLS analysis during ozonolysis experiments 

are discussed in detail in Section 8.0.  

 

7.1.3. Methanol Introduced Directly into the Ion Source 

In this experiment, methanol was introduced directly into the APCI ion source 

independent of standard introduction. This experimental design was described previously and 

was shown in Figure 6.3 (b). This was in contrast to the experiments conducted previously and 

described in Section 7.1.2 where methanol and standard were mixed, introduced into a purified 

airflow, and then transferred to the APCI ion source using the same transfer line (Figure 6.4). 

The intent was to validate the ion-molecule chemistry observed in the Section 7.1.2. 

Furthermore, general operation of the APCI-MS/MS involved ionization reagents being directly 

supplied to the source. Under those circumstances, experiments were conducted using the 

experimental design depicted in Figure 6.3 (b) 

Results for this experiment are portrayed in Figure 7.15 (a) to (d). Experiments with 

cumene hydroperoxide were not conducted since previous experiments showed that cumene 

hydroperoxide could not be ionized using protonated methanol as an ionization reagent. 

Nevertheless, results were obtained by utilizing single ion monitoring analysis mode of the 

APCI-MS/MS to monitor the expected [M + CH3OH + H]+ ion signal for all organic peroxide 

standards pre- and post ionization with protonated methanol and its clusters. While the total 

acquisition time was 6 minutes for all experiments, the methanol syringe pump operated between 

2 to 4 minutes to produce changes in the [M + CH3OH + H]+ ion signal.  
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The results portrayed in Figure 7.15 (a) to (d) showed that the [M + CH3OH + H]+ ion 

signal was not observed in mass spectra during the first and last 2 minutes of the experiment 

when the methanol syringe pump was not operating. Increases in the [M + CH3OH + H]+ ion 

signal was only observed when the methanol syringe pump was operating between 2 to 4 

minutes. Between 4 to 6 minutes of the experiment Figure 7.15 (a) to (d) showed that the [M + 

CH3OH + H]+ ion signal slowly declined as the methanol syringe pump was no longer operating. 

This slow declined suggested the possibility that methanol was adsorbing onto the transfer line. 
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Figure 7.15: SIM analysis for the expected [M +CH3OH + H]+ ion for (a) di-tert-butyl peroxide, 
(b) peracetic acid, (c) tert-butyl-hydroperoxide and (d) tert-butyl peroxyacetate. The vertical 
black line indicates when the methanol syringe pump was turned on while the vertical red line 
indicates when the methanol syringe pump was turned off.   
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To test this notion, the effective residence time (τ) for methanol was calculated for all four 

organic peroxide standards and compared to the effective residence for purified air inside the 

transfer line. Calculations were based on the dimensions of the transfer line (60 centimeters in 

length and 0.125 inch inner diameter), a purified airflow of 5 L min-1 and assuming a first order 

loss rate. Equation 7.1 and 7.2 was used to calculate τ for both methanol and purified air, 

respectively. To determine the rate constant (k) in Equation 7.2, a plot of ln ([M + CH3OH + H]+ 

ion count) versus time was generated for each standard. This plot gave a straight line with the 

slope equal to –k (Equation 7.3). The calculated τ for methanol ranged from 0.468 minutes to 

1.97 minutes while τ for purified air was determined to be 9.50 x 10-4 minutes. The 3 to 4 orders 

of magnitude difference between the calculated τ for methanol and purified indicated that 

methanol adsorbed onto the transfers lines during the experiments.  

𝜏!"#$%$&'  !"# =   
𝜋𝑟!𝐿

𝑎𝑖𝑟𝑓𝑙𝑜𝑤 
Equation 7.1 

𝜏!"#!!"#$   =   
1
𝑘 Equation 7.2 

𝑙𝑛([𝑀 + 𝐶𝐻!𝑂𝐻 + 𝐻]!𝑖𝑜𝑛)! =   −𝑘𝑡 + 𝑙𝑛([𝑀 + 𝐶𝐻!𝑂𝐻 + 𝐻]!)!   Equation 7.3 

In short, this aspect of the project validated the ion-molecule chemistry described by 

Reaction 6.7. Moreover, it showed that the [M + CH3OH + H]+ ion could be produced in the 

APCI ion source when methanol was supplied directly to the ion source independent to standard 

introduction (Figure 6.3 (b)). For this reason, it was concluded that methanol could be introduced 

directly to the ion source without prior contact or mixing with standards. Therefore, all future 
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smog chamber experiments could be conducted using the experimental set-up depicted in Figure 

6.3 (b).  

 

7.1.4. Comparison of Water and Methanol as an Ionization Reagent 

For gas-phase protonation to occur, the PA of the neutral molecule must be higher than 

the PA of the ionization reagent. Although the PA for most of the organic peroxide standards 

used in this experiment satisfied this requirement (Table 6.3), the acquired full scan mass spectra 

yielded unexpected results. Generally, ionization using protonated water resulted in full scan 

mass spectra dominated by fragmented ions while ionization with protonated methanol resulted 

in a protonated adduct ion. This meant that the criterion of having a higher PA than the 

ionization reagent was not sufficient for developing a method to detect organic peroxides.  

Given this, an evaluation of both ionization reagents was required. This was based on PA 

knowledge for both ionization reagents and acquired full scans, neutral-loss scans and product-

ion scans for all standards. Collectively, these results showed that methanol was a more 

appropriate ionization reagent for the detection of organic peroxide standards. Although [M + 

H]+ ions were not apparent, adduct ion signals [M + CH3OH + H]+ were observed during the 

analysis for four out of five organic peroxides tested.  As described in Section 3.1.1, adduct ions 

form when the PA of a neutral molecule and ionization reagent are similar or the exothermicity (-

ΔH°reaction) of the overall proton transfer reaction is low.  

A comparison of calculated ΔH°reaction for all organic peroxides with protonated methanol 

or water as an ionization reagent is portrayed in Table 7.1. The lower ΔH°reaction for methanol in 

comparison to water indicated that methanol can achieve a softer ionization for the organic 
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peroxide standards used in this project. As a result, intact adduct ions were observed since there 

was less excess energy available to facilitate the further fragmentation of any type of protonated 

parent molecules ([M + H]+, [M + H2O + H]+, or [M + CH3OH + H]+). Contrastingly, the 

relatively larger ΔH°reaction calculated for chemical ionization using protonated water resulted in 

more energy being transferred to the formed protonated molecule [M + H]+. This caused the 

higher fragmentation observed during full scan analysis of organic peroxide standards.  

 

Compound PA         
(kJ mol-1) 

Water as Ionization 
Reagent 

Methanol as 
Ionization Reagent 

tert-butyl 
hydroperoxide 

803 -107 -37 

di-tert-butyl peroxide 790 -94 -24 

cumene hydroperoxide 696 – 766* - - 

peracetic acid 783 -87 -17 

peroxyacetate 791 -95 -25 

* This value was revised after data interpretation. The resultant value was reported as a range since PA for cumene 
hydroperoxide was not known. Its range was inferred from its reaction with protonated water and methanol ions in 
the ion source. 

 

 

7.1.5. Optimal Ionization Reagent Flow 

Since ionization with protonated methanol proved to be a more selective method for 

organic peroxide detection, the utility of this reagent was further investigated. Before conducting 

ozonolysis experiments, an optimum ionization reagent flow was established to maximize the [M 

Table 7.4: Enthalpy of the overall gas-phase protonation reaction (ΔH°reaction) 
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+ CH3OH + H]+ ion signal for organic peroxide standards. This was done using the direct 

method for ionization reagent introduction (Figure 6.3 (b)). To determine an optimal flow, the 

rate of the ionization reagent syringe pump was varied. The results for these experiments are 

depicted in Figure 7.16 (a) to (d). The observed graphs show that there was an initial increase for 

the [M + CH3OH + H]+ ion signal upon increasing the concentration of methanol used as an 

ionization reagent for tert-butyl hydroperoxide, di-tert-butyl peroxide, and peracetic acid (Figure 

7.16 (a), (b) and (d)). However, increasing the concentration of methanol higher than 0.01 ppm 

resulted in a decrease in the [M + CH3OH + H]+ ion signal for tert-butyl hydroperoxide and 

peracetic acid (Figure 7.16 (a) and (d)). While the [M + CH3OH + H]+ ion signal for di-tert-butyl 

peroxide remained stable at methanol concentrations higher than 0.01 ppm, the [M + CH3OH + 

H]+ ion signal for tert-butyl peroxyacetate reached its maximum at the lowest methanol 

concentration output of 0.00334 ppm, declined, and stabilized at higher concentrations of 

methanol. Overall, it appeared that the [M + CH3OH + H]+ ion signal was optimized under low 

syringe pump settings. Based on the observed graphs, a syringe pump setting around 0.2 µL min-

1 was selected for future experiments.  
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Figure 7.16: Graphs depicting the observed [M + CH3OH + H]+ ion signal as a function of 
methanol concentration. (a) tert-butyl hydroperoxide, (b) di-tert-butyl peroxide, (c) tert-butyl 
peroxyacetate and (d) peracetic acid.
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7.2. Summary for the Analysis of Commercially Available Organic Peroxide Standard by 

(+) APCI-MS/MS 

Developing a method for organic peroxide detection required knowledge regarding its 

ion-molecule chemistry while using an (+) APCI-MS/MS. This was achieved by analyzing 

commercially available organic peroxide standards with the (+) APCI-MS/MS. The intention 

was to note commonalties such as similar mass losses during MS/MS experiments that would 

assist in developing a “fingerprint” analysis that could be applied to search for organic peroxide 

formation during β-pinene ozonolysis experiments. 

Early experiments using protonated water for gas-phase ionization of selected standards 

resulted in full scan mass spectra dominated by fragmented ions. As a consequence, sufficient 

amount of intact ions ([M + H]+ and [M + H2O + H]+) could not be observed or isolated by the 

APCI-MS/MS for further MS/MS experiments. Moreover, no common features could be 

ascertained from the resulting full scan mass spectra to develop a “fingerprint” for organic 

peroxide detection. Ionization with protonated water was determined to be unsuitable since the 

ΔH°reaction was large enough to produce excess energy available to further fragment any intact 

ions produced in the ion source. Conversely, the ΔH°reaction calculated for organic peroxide 

standards chemically ionized using protonated methanol was small enough to produce protonated 

stable adduct ions in full scan mass spectra. This proved to be more useful since the resultant 

stable protonated adduct ions could be isolated and fragmented to determine common mass 

losses to assist in developing a “fingerprint” methodology. 
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Collectively, the knowledge acquired from neutral-loss and product-ion scans along with 

gas-phase ionization using either protonated water or methanol was applied to establish a method 

for organic peroxide detection. It was determined that resultant products from ozonolysis 

experiments should be ionized using protonated methanol injected into the ion source at a flow 

rate of 0.2 µL min-1 using the direct syringe pump method. Since organic peroxides were the 

compounds of interest in this project NLS would be utilized to determine a range of m/z ions 

capable of losing 34 u.  
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8. Results and Discussion for β-pinene Ozonolysis Experiments 

β-pinene/ozonolysis experiments were conducted using an 8 m3 cylindrical smog 

chamber at York University. Ozonolysis products were detected on-line using (+) APCI-MS/MS. 

Smog chamber studies were undertaken to determine if the fingerprint method established during 

organic peroxide standard analysis could be successfully applied (Section 7.1.1.1 and 7.1.2.2).  

Similar to organic peroxide standard analysis, ozonolysis products were chemically ionized using 

either water or methanol in purified air as an ionization reagent.   

 

8.1. Smog Chamber Products Ionized with Protonated Water 

Full scan mass spectra for the reaction of β-pinene with O3 were acquired using water as 

an ionization reagent inside the APCI ion source. An example of a full scan mass spectrum is 

portrayed in Figure 8.1 (a). The acquired full scan mass spectrum was dominated by odd-

numbered m/z ions 139, 155, 277 and 293. The appearance of odd-numbered m/z ions were 

expected since it was assumed that ozonolysis products formed in the smog chamber would 

exclusively consist of carbon (C), hydrogen (H), and oxygen (O) in its resultant structure. 

Organic products with some variation of the structural formula Cx Hy Oz have an even nominal 

mass since these elements together, form even number of covalent bonds. Therefore, the 

presence of odd-numbered m/z ion signals were a result of even-mass ozonolysis products being 

protonated at either the carbonyl or hydroxyl functional group region of the ozonolysis product 

to form an m/z ion signal that was 1 u higher than the nominal mass of the ozonolysis product.  
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Although the full scan mass spectrum shown in Figure 8.1 (a) revealed a range of m/z 

ions, this analysis mode does not provide structural information for the detected ion signals. 

Furthermore, this analysis mode is not as sensitive since Q1 is focusing on a wide range of 

products over time (Section 4.1.4). Therefore, this analysis mode was not useful for organic 

peroxide detection. Enhanced sensitivity was achieved when oxidation products were analyzed 

using the NLS analysis mode of the APCI-MS/MS. Setting the APCI-MS/MS to only detect a 

range of m/z ions losing 34 u during collision events, greatly reduced the complexity observed in 

Figure 8.1 (a) to a handful of m/z ions displayed in Figure 8.1 (b). Since this project was only 

concerned with organic peroxide identification, this analysis mode revealed m/z ions that were 

possible organic hydroperoxide candidates. Similar to the organic peroxide standard analysis, a 

loss of 34 u was attributed to a loss of H2O2 from the [M + H]+ ion signal during protonation 

followed by collisions with collision gas. Overall, the resultant NLS mass spectrum revealed five 

m/z ion signals of interest since they were capable of losing 34 u from its structure; m/z 171, 173, 

187, 201, and 203.  

m/z 

(a) (b) 

Figure 8.1: Mass spectra for β-pinene ozonolysis. (a) Represents a full scan mass spectrum 
while (b) represents a 34 u neutral-loss scan mass spectrum acquired an APCI-MS/MS CE 
setting of 10 eV. 
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8.1.1. Smog Chamber Products Ionized with Protonated Methanol 

Early experiments with organic peroxide standards revealed that fragmented ions 

dominated the full scan mass spectrum when water was used as an ionization reagent. Since 

intact ions representing [M + H]+ and [M + H2O + H]+ were not observed, this prevented 

conducting MS/MS experiments to confirm standard structures or ascertain common mass losses. 

Considering this, it was suspected that organic peroxides formed during ozonolysis experiments 

could exhibit similar behaviour during full scan analysis mode. Since protonation of organic 

peroxide standards using protonated methanol resulted in the appearance of protonated adduct 

ions [M + CH3OH + H]+ in full scan mass spectra and improved detection of [M + H]+ ion 

signals during NLS analysis mode for 34 u mass loss, it was suspected that utilizing methanol as 

an ionization reagent could lead to improved organic peroxide identification during ozonolysis 

experiments.  

Since chemical ionization using protonated methanol produces [M + CH3OH + H]+ ions 

in full scan analysis mode, a list of expected m/z ions was generated before smog chamber 

ozonolysis products were analyzed by APCI-MS/MS. The generated list was based on m/z ion 

signals ([M + H]+) observed in full scan mass spectrum shown in Figure 8.1 (a) and m/z ions 

representing organic hydroperoxide candidates from NLS mass spectrum as shown in Figure 8.1 

(b). The expected m/z ion signals are shown in Table 8.1. Once ozonolysis experiments were 

conducted, full scan and NLS mass spectra were acquired using (+) APCI-MS/MS. Figure 8.2 (a) 

shows an example of an acquired full scan mass spectrum for ozonolysis products chemically 

ionized using protonated methanol while Figure 8.2 (b) portrays a NLS mass spectrum for 

precursor m/z ions losing 34 u during collision events. Similar to the results discussed in Section 

8.1, the full scan mass spectrum shown in Figure 8.2 (a) was dominated by a range of odd-
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numbered m/z ions. These ion signals were a result of either proton transfer to form m/z ion 

signals representing [M + H]+ or adduct ion formation to form [M + CH3OH + H]+ ion signals. 

Additionally, the full scan mass spectrum in Figure 8.2 (a) displayed similar m/z ion signals as 

Figure 8.1 (a). Like the full scan mass spectrum shown in Figure 8.1 (a), the observed full scan 

mass spectrum depicted in Figure 8.2 (a) did not give first-hand information regarding which 

observed m/z ion signals represented organic peroxides. However, the full scan mass spectrum 

shown in Figure 8.2 (a) revealed that three out of five expected m/z ions listed in Table 8.1 were 

apparent. A summary of the expected m/z ions observed in the full scan mass spectrum is shown 

in Table 8.2. Ozonolysis products having a nominal mass of 170, 172 and 186 g mol-1 formed a 

[M + CH3OH + H]+ ion signal upon chemical ionization with protonated methanol. Since these 

ozonolysis products formed a [M + CH3OH + H]+ ion signal, it was reasonable to assume that the 

PA of these compounds were close to or greater than the PA of methanol.  

 

 

Nominal Mass                                                  
(g mol-1) 

Expected m/z Ion Signal                                       
[M + CH3OH + H]+ 

170 203 

172 205 

186 219 

200 233 

202 235 

 

 

Table 8.1: List of expected m/z ion signals during chemical ionization with protonated 
methanol 
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Nominal Mass                                                  
(g mol-1) 

Expected m/z Ion Signal                                       
[M + CH3OH + H]+ 

Observed Expected m/z Ion Signal                                       
[M + CH3OH + H]+ 

170 203 Yes 
172 205 Yes 
186 219 Yes 
200 233 No 
202 235 No 

 

 

Similar to NLS analysis using protonated water as an ionization reagent (Figure 8.1 (b)), 

the full scan mass spectrum depicted in Figure 8.2 (a) was simplified by acquiring a NLS mass 

spectrum for a range of m/z ions capable of losing 34 u during collision events (Figure 8.2 (b)). 

During organic peroxide standard analysis using methanol as an ionization reagent, standards 
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Figure 8.2: Mass spectra for β-pinene ozonolysis products chemically ionized with protonated 
methanol. (a) Represents a full scan mass spectrum while (b) represents a 34 u NLS mass 
spectrum acquired at an APCI-MS/MS CE setting of 10 eV.  

Table 8.2: Summary of expected m/z ion signals observed in full scan mass spectrum 
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containing a hydroperoxy group were easily detected as [M + H]+ ions while utilizing the NLS 

analysis mode of the APCI-MS/MS to determine a range of m/z ions that lost 34 u during 

collision events (Ssection 7.1.2). Given these observations, smog chamber ozonolysis products 

were additionally analyzed using the NLS analysis mode to find additional organic 

hydroperoxide candidates, which were not apparent during initial NLS analysis described in 

Section 8.1. A comparison of NLS mass spectra for both ionization reagents is portrayed in 

Figure 8.3 (a) and (b). While Figure 8.3 (a) showed m/z ions 171, 173, 187, 201 and 203 as ions 

that lost 34 u during collision events, Figure 8.3 (b) showed m/z ions 171, 173, 187 and 203 as 

ions that exhibited a loss of 34 u. Consequently, 34 u NLS mass spectrum shown in Figure 8.3 

(b) did not yield additional organic hydroperoxide candidates. 

 

 

 

 

Overall, it was apparent that additional organic hydroperoxide candidates were not 

obtained using methanol as an ionization reagent. This was contrary to the results obtained 
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Figure 8.3: 34 u NLS mass spectra obtained by setting APCI-MS/MS CE to 10 eV. (a) 
Represents NLS mass spectrum using protonated water while whereas (b) was obtained using 
protonated methanol. 
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during organic peroxide standard analysis. Moreover, it was apparent that not all ozonolysis 

products were capable of forming a protonated adduct ion [M + CH3OH + H]+ in the APCI ion 

source. For instance of the five expected m/z ions listed in Table 8.1, only three were actually 

observed in the full scan mass spectrum (Figure 8.2 (a)). Collectively, the results summarized in 

Table 8.2 along with full scan and NLS mass spectra shown in Figure 8.2 (a) and (b) 

respectively, did not provide enough information to continue using methanol as an ionization 

reagent during smog chamber experiments. As a result, organic peroxide detection by the APCI-

MS/MS continued by using water present in purified air as an ionization reagent.  

 

8.2. Product-ion Scan Analysis for Smog Chamber Products 
 

Since it was established in the previous section that chemical ionization using protonated 

methanol did not identify additional organic hydroperoxide candidates, APCI-MS/MS continued 

by using water from purified air as an ionization reagent. To confirm the loss of 34 u during 

collision events, ascertain additional common mass losses and ultimately suggest structures to 

represent the precursor molecule, product-ion scan analysis was conducted using the APCI-

MS/MS. Product-ion scans for precursor ions m/z 171,173, 187, 201 and 203 are shown in Figure 

8.4 (a) to (e) where a loss of 34 u was observed during MS/MS experiments of the precursor ions 

[M + H]+. These ion signals were previously identified as organic hydroperoxide candidates in 

smog chamber experiments described in Section 8.1. For some precursor ions like m/z 171, 173, 

and 201 the loss of 34 u was minor in comparison to other losses displayed in their respective 

product-ion mass spectrum whereas m/z 187 and 203 showed a significant loss of 34 u in their 

product-ion mass spectrum. Regardless of the signal intensity representing a loss of 34 u [M + H 
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– H2O2]+, the acquired product-ion mass spectra supported the results obtained initially through 

NLS analysis described in Section 8.1. 
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Figure 8.4: Product-ion mass spectra for m/z (a) 171, (b) 173, (c) 187, (d) 201 and (e) 203. 
Product-ion scans were acquired by setting the APCI-MS/MS CE to 10 eV. Selected precursor 
ions were organic hydroperoxide candidates based on NLS analysis for 34 u loss shown in 
Figure 8.1 (b). Mass losses are shown in purple for clarity.  
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Aside from an observed loss of 34 u, additional common mass losses were observed 

while comparing the product-ion mass spectra of all five selected m/z ions of interest. For 

instance, losses of 18 u (H2O) from precursor ion signal [M + H]+ indicated the presence of an 

alcohol (OH) functional group within the precursor ion structure. Other common mass losses like 

32 u and 62 u were observed at various intensities for all five m/z ions of interest. Fragments 

representing a single neutral fragment loss of 32 u and 62 u are summarized in Table 8.3. These 

fragments were derived based on precursor ion’s elemental composition of Cx Hy Oz. Most 

neutral mass losses listed in Table 8.3 can be explained from different combinations of smaller 

mass losses. For instance a mass loss of 32 u could arise from sequential losses of 18 u (H2O) 

and 14 u (CH2). However, a neutral loss of CH2 is highly unlikely. However, a loss of 32 u was 

previously observed and rationalized during organic peroxide standard analysis of cumene 

hydroperoxide (Figure 7.2). During analysis of cumene hydroperoxide, protonation in the APCI 

ion source did not occur at the hydroperoxy functional group as expected. Protonation occurred 

within the ring of the molecule allowing the elimination of an O2 molecule during MS/MS 

experiments. Therefore, the observed mass loss of 32 u during product-ion scan analysis was 

attributed to a loss of O2. On the other hand, 62 u could reasonably be a result of a sequential 

neutral mass loss of 18 u (H2O) and 44 u (CO2) or 34 u (H2O2) and 28 (CO). This type of loss 

presented an interesting scenario to consider since it introduced the possibility that some of the 

observed oxidation products might be an organic peroxy acid (as shown in Figure 7.3) as 

opposed to an organic hydroperoxide (as shown in Figure 7.3). Total mass losses of 62 u were 

investigated further and will be discussed in Section 8.2.3. Regardless of the mass loss 

combination, it was apparent that a loss of 34 u was not the only mass loss common amongst the 

five selected m/z ions.  
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Molar Mass Neutral Fragment Exact Mass 
18 H2O 18.0153 
32 O2 31.9898 
 CH4O 32.0262 
34 H2O2 34.0055 
46 CH2O2 46.0054 
 C2H6O 46.0419 
62 CH2O3 62.0003 
 C2H6O2 62.0368 
[Watson and Sparkman, 2007] 

 

 

8.2.1. Additional NLS Analysis 

Common mass losses of 32 and 62 u allowed for additional NLS analysis studies to be 

conducted. In the atmospheric science literature, other groups validated organic hydroperoxide 

formation by using mass losses of 34 u alone during MS/MS experiments (Baker et al., 2001 and 

Reinnig et al., 2007). However, losses of 32 and 62 u have never been considered or observed in 

the literature. Similar to NLS analysis of 34 u during ozonolysis experiments, the APCI-MS/MS 

was set to detect a range of m/z ions capable losing 32 or 62 u during MS/MS experiments. 

Resultant NLS mass spectra are shown in Figure 8.5 (a) and (b). Comparing the NLS mass 

spectra shown in Figure 8.5 (a) and (b) to the NLS mass spectrum for 34 u mass loss shown in 

Figure 8.1 (b), NLS analysis for 32 and 62 u mass losses displayed most of the m/z ions observed 

during 34 u NLS analysis under the same MS/MS conditions at various relative intensities. For 

instance, NLS for 32 u displayed m/z 171, 187, 201 and 203 ions in its resultant NLS mass 

Table 8.3: Possible Neutral Loss Fragments during MS/MS Experiments 
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spectrum. The NLS mass spectrum for 62 u mass loss displayed very minor m/z 203 ion signals 

whereas ion signals m/z 171, 173, 187, and 201 were apparent in the NLS mass spectrum.  

 

 

 

 

Despite the differences between NLS mass spectra for 32, 34 and 62 u mass loss, the 

obtained NLS mass spectra validated previously described product-ion scans for the five organic 

hydroperoxide candidates (Figure 8.4).  It appeared that mass losses of 32 and 62 or 32, 34 and 

62 u may be unique to compounds that contain at least a hydroperoxy functional group. 

 

8.2.2. Exclusivity of Mass Losses 32, 34 and 62 u to Organic Peroxide Structures 

To confirm unique mass losses of 32, 34 and 62 u, product-ion mass spectra for other 

known β-pinene/ozonolysis oxidation products were examined. Product-ion mass spectra 

portrayed in the previous section were compared to product-ion mass spectra previously acquired 

m/z 

(a) (b) 

Figure 8.5: NLS analysis probing for mass losses of 32 and 62 u.  (a) Represents the APCI-
MS/MS detecting a range of m/z ions that lost 32 u whereas (b) depicts the APCI-MS/MS 
detecting mass losses of 62 u. Both scans were acquired by setting the collision energy to 10 CE. 
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on 01/11/12 during photo-oxidation experiments of β-pinene conducted in the same York 

University smog chamber (Sarrafzadeh, 2012). Unlike the oxidation experiments conducted in 

this project, the experimental results used for comparative analysis were obtained by oxidizing β-

pinene with hydroxyl radicals (HO) in the presence of 400 part-per-billion (ppb) NO. NOx 

chemistry through the two competing reactions described by Reaction 5.2 and 5.3 affects the 

formation of organic peroxides. As a result, it was assumed that organic peroxide formation 

would be minimal during the HO-initiated oxidation experiments. The photo-oxidation products 

used for comparative analysis are shown in Figure 8.6 (a) to (f). These structures were postulated 

and identified by Auld (2009) and Sarrafzadeh (2012) during photo-oxidation experiments. 

Notably, the postulated structures used for comparative analysis do not contain a hydroperoxy 

functional group. The product-ion mass spectra for  [M + H]+ ion signals for all six photo-

oxidation products is shown in Figure 8.7 (a) to (f).  

 

 

CH3
CH3

O

CH3
CH3

O

OH

CH3
CH3

O

OH

O CH3
CH3

O

OH

O

OH

CH3
CH3

O

CH3
O

OH

CH3
CH3

O

O

OH

OH

(a) (b) (c) (d) 

(e) (f) 

Figure 8.6: Postulated oxidation products for β-pinene photo-oxidation experiments. Oxidation 
products were postulated and identified previously by Auld (2009) and Sarrafzadeh (2012). 
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(a) 

(f) (e) 

(d) (c) 

(b) 

- 18 u 

- 56 u 
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- 74 u 
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Figure 8.7: Product-ion mass spectra acquired 01/11/12 by Sarrafzadeh 2012.  Product-ion mass 
spectra were acquired at a CE setting of 10 eV using (+) APCI-MS/MS. Product-ion mass 
spectrum shown in (a) represents the proposed structure shown in Figure 8.6 (a), while (b) to (f) 
represents proposed structures shown in Figure 8.6 (b) to (f) appropriately. Mass losses are 
shown in purple for clarity. 
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Product-ion mass spectra during photo-oxidation experiments revealed that mass losses 

of 32 and 34 u were unique to organic hydroperoxides since these mass losses were not observed 

in product-ion mass spectra for the six photo-oxidation products considered for comparative 

analysis. This was expected since mass losses of 32 and 34 u were possible if resultant oxidation 

products contained at the very least a peroxy moiety (O – O). Contrastingly mass losses of 18 

(H2O) and 46 u (H2O and CO) were common between organic peroxides and carboxylic acids. 

Therefore, these losses were not unique enough to distinguish organic peroxide formation from 

carboxylic acids. Considering mass losses of 18 and 46 u would be problematic for m/z ion 

signals composed of a mixture of organic peroxides and carboxylic acids. Given this observation, 

mass losses of 32 and 34 u were essential at distinguishing the two oxidation products from one 

another.  

Additionally, mass losses of 62 u were investigated further since its appearance in 

product-ion mass spectra during ozonolysis experiments revealed the possibility for organic 

peroxy acid formation (refer to Figure 7.3 for general structure). Similar to mass losses of 32 and 

34 u, mass losses of 62 u were not observed in the product-ion mass spectra shown in Figure 8.7 

(a) to (f). To validate the exclusivity of this mass loss to organic peroxy acids, 3-

chloroperbenzoic acid (Sigma-Aldrich) (Figure 8.8) was purchased and analyzed using (+) 

APCI-MS/MS. This was the only organic peroxy acid standard commercially available. A 

portion of this standard was dissolved in methanol to achieve a concentration of 10% w/v and 

analyzed in the same manner as the 10% v/v organic peroxide standards described in Section 

7.1.1.2. The resultant full scan mass spectrum and product-ion mass spectrum is portrayed in 

Figure 8.9 (a) and (b). Mass losses of 62 u dominated the product-ion mass spectrum while 

masses losses of 34 u were visible. Since an ion signal at m/z 155 (loss of 18 u) was absent, 
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losses of 62 u could not be justified through sequential losses of H2O (18 u) and CO2 (44 u). 

Instead, 62 u mass losses could be rationalized through a mass loss of 34 u (H2O2) and 28 u 

(CO). Overall, the product-ion mass spectrum demonstrated the possibility that 62 u mass losses 

observed during product-ion analysis could indicate the formation of organic peroxy acids. 

Moreover, this mass loss was deemed unique since it was not observed in product-ion mass 

spectra of photo-oxidation products considered in this project for comparative analysis.  
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Figure 8.8: Structure for 3-chloroperbenzoic acid 

Figure 8.9: Analysis of 10% w/v 3-chloroperbenzoic acid. (a) Represents a full scan mass 
spectrum while (b) shows the product-ion mass spectrum obtained at a CE setting of 10 eV for 
the [M + H]+ ion signal m/z 173. Mass losses are shown in purple for clarity. 
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8.3. Proposed Structures  
 

Based on observed mass losses of 18, 32, 34, 46, and 62 u during β-pinene/ ozonolysis 

experiments, six possible structures representing organic peroxides are proposed based on a 

formula of Cx Hy Oz. Although in principle different empirical formulas can be suggested to 

explain ozonolysis products with molecular mass 170, 172, 186, 200 and 202 g mol-1, it was 

assumed that the resultant empirical formula would not contain a carbon count higher than 9 

(C9). An empirical formula containing C10 was unlikely since β-pinene reaction with O3 results 

in the elimination of an aldehyde/ketone (Figure 5.2). The six proposed structures along with 

probable fragmentation pathways to support the proposed structures are shown and described in 

later sections. Since APCI-MS/MS cannot distinguish between isobaric compounds and 

ozonolysis products were not separated prior to analysis, additional known β-pinene oxidation 

products were considered to rationalize MS/MS spectra. Lastly, although the focus of this work 

was not to describe the formation mechanism for the postulated structures, a credible reaction 

mechanism was proposed and is shown in Appendix G. 

8.3.1. Proposed Structure Leading to Ion Signal at m/z 171 

The [M+H]+ ion signal m/z 171 was apparent during NLS scans for 32, 34 and 62 u mass 

loss. Additionally, mass losses of 18 and 46 u were observed during product-ion scan analysis. 

Collectively, these mass losses were used to determine the functional groups present in the 

neutral oxidation structure. Moreover, two empirical formulas, C8H10O4 and C9H12O3, were 

postulated for molar mass 170 using the observed mass losses. Although mass losses of 18 u 

(H2O) indicated a hydroxyl functional group (OH), a hydroperoxy functional group was more 

likely given the observed mass loss of 34 u in product-ion mass spectrum. All plausible 
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structures representing molar mass 170 and an empirical formula of C9H14O3 are depicted in 

Figure 8.10 (a) to (c). The only structure that includes the peroxy and hydroperoxy group is 

Figure 8.10 (a), which was observed by Heaton and coworkers (2007) during β-

pinene/ozonolysis experiments. A conceivable loss mechanism for 18 and 34 u is portrayed in 

Figure 8.11 (a) and (b). Observed mass losses of 32 u representing O2 were difficult to 

rationalize but still considered possible as long as mass losses of methanol (CH3OH) were 

discounted and protonation in the APCI ion source occurred at the carbonyl moiety for the 

reasons discussed in Section 3.1.2.  
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Figure 8.10: Postulated structures representing molar mass 170 g mol-1 
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Mass losses such as 46 and 62 u were harder to rationalize from the given structure 

shown in Figure 8.10 (a). This suggested that the resultant m/z 171 ion signal was a mixture of 

ozonolysis products with the same molar mass. However, it was understood that mass losses of 

46 u represented a combined loss of CO (28 u) and H2O (18 u) since these mass losses were 

observed during MS/MS experiments using (+) APCI-MS/MS for carboxylic acids (Sarrafzadeh, 

2012) and organic peroxy acids (Heaton et al., 2007 and Reinnig et al., 2009). Combinations 

describing mass losses of 62 u were described in previous sections (Section 8.2.3). Furthermore, 

this mass loss was considered unique to structures resembling organic peroxy acids. Since the 

proposed structure did not match the product-ion mass spectrum for m/z 171 in its entirety, this 

indicated that the resultant m/z 171ion signal was a mixture of ozonolysis products with the same 

molar mass. This notion was valid since the isobaric oxidation product pinalic-3-acid (Figure 
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Figure 8.11: Postulated fragmentation pathway representing (a) losses of H2O (18 u) and (b) 
losses of H2O2 (34 u) 
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8.10 (b)) and the structure depicted in Figure 8.10 (c) have been proposed and observed during 

β-pinene oxidation experiments (Auld 2009, Heaton et al., 2007, and Jenkin, 2004). Lastly, 

losses of 62 u indicated that there was an additional undetermined structure capable of exhibiting 

this mass loss. Although this mass loss was unique to organic peroxy acids, a structure could not 

be established containing this functional group. However, combination of mass losses totalling 

62 u could not be justified by the structures depicted in Figure 8.10 (b) and (c).  

 

8.3.2. Proposed Structure Leading to Ion Signal at m/z 173  

The m/z 173 ion signal was the only [M + H]+ ion whose fragmentation pattern resulted 

in two postulated organic peroxide structures having the empirical formulas, C8H12O4 or 

C9H16O3. The two possibly credible structures are shown in Figure 8.12 (a) and (b) along with an 

isobaric structure identified previously by (Jenkin 2004, Auld 2009 and Sarrafzdeh 2012) (Figure 

8.12(c)). Two organic peroxide structures were proposed since the observed mass losses in 

product-ion mass spectrum and the appearance of m/z 173 in 32, 34, and 62 u NLS mass spectra 

could not be rationalized considering one organic peroxide structure. The possible fragmentation 

pathways to give mass losses of 32, 34, 46 and 62 u are depicted in Figure 8.13 (a) to (d), while 

Figure 8.14 (a) and (b) describes fragmentation pathways to give mass losses of 32 and 34 u. 

Since m/z 173 was apparent in 34 u NLS mass spectrum, the resultant structure contained at least 

a hydroperoxy functional group. This functional group would validate mass losses of both 18 

(H2O) and 34 u (H2O2) observed in the product-ion mass spectrum (Figure 8.4 (b)). Additionally, 

the relatively minor appearance of m/z 173 in 32 u NLS mass spectrum indicated the presence of 

a peroxy bond (-O – O-) as long as losses of CH3OH were discounted.  A mass loss of 32 u can 

be rationalized by both structures shown in Figure 8.12 (a) and (b) but an additional mass loss 
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difference of 18 u (H2O) between m/z 141 and m/z 123 fragment ions observed in the product-ion 

mass spectrum shown in Figure 8.4 (b) can only be explained by the structure shown in Figure 

8.12 (b) and fragmentation pattern depicted in Figure 8.14 (a) as long as protonation in the APCI 

ion source took place at the hydroxyl functional group.  For a structure like the one portrayed in 

Figure 8.12 (a), mass losses of 32 u is reasonably explained in Figure 8.13 (a) since protonation 

at a carbonyl functional group (C=O) was possible for the reasons discussed in Section 3.1.2.  
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Figure 8.12: Postulated structure srepresenting molar mass 172 g mol-1 (Auld 2009 and Heaton 
et al. 2007) 
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Figure 8.13: Possible fragmentation pathway for the protonated structure represented by Figure 
8.12 (a) 
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Similar to m/z 171 fragmentation pathways, mass losses of 46 u were reasonable inferred 

through mass losses of H2O (18 u) and CO (28 u). This mass loss can be rationalized by the 

structures shown in Figure 8.12 (b) and (c) after protonation in the APCI ion source. However, a 

fragmentation pathway leading to mass losses of 32, 34 and 62 u could not be realized from the 

structure shown in Figure 8.12 (c). As a result, the m/z 173 ion signal observed in full scan mass 

spectrum was assumed to be a mixture comprised of the protonated structure shown in Figure 

8.12 (b) and (c) and an additional protonated structure shown in Figure 8.12 (a) that loses a 62 u 

fragment during MS/MS experiments. Two pathways were considered for rationalizing a mass 

loss of 62 u from the structure shown in Figure 8.12 (a). Figure 8.13 (d) portrays a fragmentation 

pathway where a single fragment totalling 62 u is lost from a protonated structure shown in 
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Figure 8.14: Possible fragmentation pathway for the protonated structure represented by Figure 
8.12 (b) 
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Figure 8.12 (a) whereas Figure 8.13 (c) describes a fragmentation pathway rationalizing a 

sequential mass loss totalling 62 u (loss of H2O2 and CO) as observed in product-ion mass 

spectrum. Although fragmentation pathways could easily be determined to rationalize mass 

losses of 62 u, the relative minor appearance of m/z 173 in 62 u NLS mass spectrum coupled 

with the dominant losses of H2O and O2 observed in the product-ion mass spectrum, suggested 

that the structure shown in Figure 8.12 (a) was a minor contributor to the overall m/z ion signal 

m/z 173 observed in full scan mass spectrum. Instead, the product-ion mass spectrum supported 

the organic peroxide structure shown in Figure 8.12 (b).  

 

8.3.3. Proposed structure leading to ion signal at m/z 187 (Peroxypinalic acid)  

Auld (2009) previously observed this ion signal during photo-oxidation experiments with 

β-pinene while its structure was described by Heaton and coworkers (2007), Docherty and 

coworkers (2006) and Jenkin (2009). The organic peroxy acid structure known as peroxypinalic 

acid, is depicted in Figure 8.15 (a) along with two known isobaric structures (Figure 8.15 (b) and 

(c)) (Heaton et al. 2007). While analyzing ozonolysis products by APCI-MS/MS, this ion signal 

was prominent during 34 and 62 u NLS analysis (Figure 8.2 (b) and Figure 8.5 (b)). Conversely, 

its signal was minor in 32 u neutral-loss mass spectrum (Figure 8.5 (a)). The proposed C9H14O4 

structure was supported by acquired product-ion mass spectrum portraying dominant mass losses 

of 18 u (H2O) and 34 u (H2O2).  
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 Figure 8.16 (a) to (d) shows peroxypinalic acid in its protonated form along with 

postulated fragmentation pathways. Minor mass losses of 32 u were possible as long as 

protonation occurred at the carbonyl functional group as opposed to the hydroperoxy functional 

group (Figure 8.16 (a)). Credible mass losses totalling 62 u (Figure 8.16 (c)) supported an 

organic peroxy acid structure (See Figure 7.3 for general structure) as opposed to an organic 

hydroperoxide structure (See Figure 7.3 for general structure). Similar to m/z 173 ion signal 

analysis, mass losses of 46 u during MS/MS experiments were attributed to losses of H2O (18 u) 

and CO (28 u). Although the proposed structure shown in Figure 8.15 (a) could theoretically 

exhibit this mass loss, other known β-pinene ozonolysis products such as the ones proposed by 

Heaton et al., (2007) (Figure 8.15 (b) and (c)) could also exhibit this mass loss. However, by 

visual inspection, these isobaric ozonolysis products under the same experimental conditions are 

less likely to lose 62 u during MS/MS experiments. This inference was first established assuming 

that the neutral fragments portrayed in Table 8.3 can only explain mass losses of 62 u during 

MS/MS experiments. Lastly, the discussion of 62 u mass losses in Section 8.2.3 demonstrated 

that combined losses of H2O2 (34 u) and CO (28 u) were unique to structures containing a peroxy 

acid functional group. Oxidation products containing a carboxylic acid functional group as 
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Figure 8.15: Proposed structures representing molar mass 186 g mol-1 
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shown in Figure 8.6 (c) to (f) do not exhibit combined losses of H2O2 (34 u) and CO (28 u) in 

their product-ion mass spectrum (Figure 8.7 (c) to (f)). Aside from this type of loss, product-ion 

mass spectra shown in Figure 8.7 (c) to (f) did not show a single fragment loss of 62 u. Since the 

isobaric structures shown in Figure 8.15 (b) and (c) contain carboxylic acid functional groups, it 

was valid to assume that mass losses of 62 u cannot be realized by these two oxidation products.  
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Overall, it was assumed that the m/z 187 ion signal in full scan mass spectrum was a 

mixture of all oxidation products displayed in Figure 8.15 (a) to (c) in the absence of any 

information that proved otherwise.  However, observed mass losses of 32, 34 and 62 u in 
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Figure 8.16: Conceivable fragmentation pathways for peroxypinalic acid 
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product-ion mass spectrum indicated the formation of an organic peroxide compound during β-

pinene ozonolysis.  

 

8.3.4. Proposed Structure Leading to Ion Signal at m/z 201  

This ion signal was not easily observable in the full scan mass spectrum.  Although 

increased sensitivity was achieved during NLS analysis for 32, 34 and 62 u mass losses, the 

resultant ion signal was still minor in all three MS/MS spectra. One explanation for the minor ion 

signals at m/z 201 during full scan analysis was that the gas-phase concentration of the 

corresponding organic peroxide formed during ozonolysis was low compared to other ozonolysis 

products. Alternatively, the PA for the neutral structure could be lower compared to other β-

pinene ozonolysis products resulting in a decrease in sensitivity for the m/z 201 ion in the APCI-

MS/MS. Regardless of its minor appearance in full scan analysis or MS/MS experiments, its 

appearance in 34 u NLS mass spectrum indicated the presence of a hydroperoxy functional group 

within its structure.  Based on 32, 34 and 62 u NLS mass spectra (Figure 8.1 (b), Figure 8.5 (a) 

and (b) correspondingly), product-ion mass spectrum (Figure 8.4 (d)) and findings published by 

Reinnig et al., (2009) and Heaton et al., (2007) two structures having formulas of C9H12O5 and 

C10H16O4 are shown in Figure 8.17 (a) and (b) and were good candidates to represent the 

observed ion signal. Aside from this project, Reinnig et al., (2009) was one of the only papers to 

describe an organic peroxide structure with molar mass 200 g mol-1. 
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Credible fragmentation pathways are portrayed in Figure 8.18 (a) to (c) to rationalize 

mass losses of 32, 34 and 62 u. Mass losses of 32 u could be rationalized if protonation occurred 

at the hydroperoxy functional group as depicted in Figure 8.18 (a) or conceivably by protonation 

at the carbonyl functional group not associated with the hydroperoxy functional group. Both 

functional groups were considered basic sites for proton attachment as discussed in Section 3.1.2. 

Similar to the other ion signals representing organic peroxides, observed mass losses of 18 and 

46 u could be justified by both structures depicted in Figure 8.17 (a) and (b). However, observed 

mass losses of 32, 34 and 62 u cannot be rationalized by the structure depicted in Figure 8.17 (b) 

for the same reasons discussed while realizing a structure to represent the ion signal m/z 186 

(Section 8.3.3). Losses of H2O2 (34 u) and CO (28 u) were unique to structures containing a 

peroxy acid functional group. Since the isobaric structure shown in Figure 8.17 (b) is a di-

carboxylic acid, this structure cannot lose H2O2 (34 u) and CO (28 u) from its [M + H]+ structure 

during MS/MS experiments. This was further supported by MS/MS experiments conducted by 

Saraffzadeh (2012), which showed the product-ion mass spectrum of the [M + H]+ ion signal for 

the isobaric structure shown in Figure 8.17 (b) losing H2O (18 u) and HCOOH (46 u) fragments 

during MS/MS experiments (Figure 8.7 (f)). Similar to the other organic peroxides discussed in 
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Figure 8.17: Proposed structures representing molar mass 200 g mol-1. (a) Represents a 
molecular formula C9H12O5 while (b) represents a molecular formula C10H16O4 
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this project, the m/z 201 ion signal was assumed to be a mixture of both structures portrayed in 

Figure 8.17 (a) and (b) since mass losses of 18 u ad 46 u could be realized by both structures 

portrayed in Figure 8.17 (a) and (b), but mass losses of 32, 34, and 62 u could only be described 

by the structure shown in Figure 8.17 (b).  
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Figure 8.18: Postulated fragmentation pathway for the structure portrayed in Figure 35 (a) 
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8.3.5. Proposed Structure Leading to Ion Signal at m/z 203 

Similar to m/z 201, the m/z 203 ion signal was not easily observable during full scan 

analysis (Figure 8.1 (a)). Sensitivity for m/z 203 was first achieved during NLS analysis for mass 

losses of 34 u. Additionally; sensitivity for m/z 203 was enhanced in NLS mass spectrum for 32 

u mass losses (Figure 8.5 (a)) while a small ion signal was observed in NLS mass spectrum from 

62 u mass losses (Figure 8.5 (b)). Similar to m/z 201, m/z 203 relative abundance in full scan 

mass spectrum and all three NLS mass spectra was minor. This could be attributed to similar 

reasons discussed in the previous section for the minor appearance of m/z 201 during analysis. 

Moreover, Docherty et al., (2005), Heaton et al., 2007, and Reinnig et al., (2007) observed the 

corresponding organic peroxide ion signal, m/z 203, mainly in the particle phase as oppose to the 

gas phase. Therefore it was reasonable to obtain relatively low m/z 203 ion signals during gas 

phase analysis of β-pinene ozonolysis products in this project.  
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Based on product-ion mass spectrum, neutral-loss mass spectra and observations reported 

by Docherty et al., (2005) and Reinnig et al., (2007), an organic peroxide structure representing a 

molar mass of 202 g mol-1 (C9H14O5) was ascertained along with credible fragmentation 

pathways. The neutral organic peroxide structure is shown in Figure 8.19 while the 

fragmentation pathways are depicted in Figure 8.20 (a) to (d). Although m/z 203 was relatively 
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minor during NLS analysis for 32 u mass losses, a credible fragmentation pathway was 

ascertained (Figure 8.20 (a)). Mass losses of 32 u were deemed possible if protonation occurred 

at the alcohol functional group of the neutral structure as opposed to the hydroperoxy functional 

group. Protonation at the hydroperoxy group as opposed to the alcohol group would promote 

losses of H2O (18 u) and/or H2O2 (34 u) as observed in previous product-ion scan analysis. 

Although Figure 8.20 (a) shows a loss of 32 u (O2) followed by a loss of 18 u (H2O), the order at 

which m/z 203 losses these fragments could not be determined with certainty. This was because 

mass losses of 18 u followed by a loss of 32 u from m/z 203 would result in the appearance of 

fragment ions m/z 185 and m/z 153 correspondingly. These ion signals were apparent in the 

product-ion mass spectrum for m/z 203. On the other hand, a mass loss of 32 u followed by a loss 

of 18 u would result in the appearance of ion signals m/z 171 and m/z 153, respectively. These 

ion signals were also apparent during product-ion scan analysis for m/z 203. Regardless of the 

order of loss, the appearance of m/z 203 in 32 u NLS mass spectrum suggested the neutral 

structure with molar mass 202 g mol-1 had a peroxy bond in its structure.  

A peroxy acid structure was assumed based on the ion signal’s appearance in NLS mass 

spectra representing mass losses of 34 and 62 u. Mass losses of 34 u (H2O2) were possible as 

long as protonation occurred at the hydroperoxy moiety as shown in Figure 8.20 (b). 

Additionally, a loss of H2O2 (34 u) as described, would result in a subsequent loss of CO (28 u) 

from the [M +H – 34]+ ion signal for a combined mass loss of 62 u. These mass losses were 

observed in product-ion mass spectrum of m/z 203 where ion signals m/z 169 ([M + H – 34]+) 

and m/z 141 ([M + H – 62]+) were apparent (Figure 8.4 (e)).  

Equally important mass losses like 18 u (H2O) were possible through the fragmentation 

pathway postulated in the first step of Figure 8.20 (c). However, dominate losses of 36 u 
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(2(H2O)) shown by the appearance of m/z 167 in product-ion mass spectrum (Figure 8.4 (e)), 

suggested that the m/z 203 ion signal in full scan mass spectrum (Figure 8.1 (a)) was not purely 

attributed to an organic peroxide. Considering the organic peroxide structure shown in Figure 

8.19, protonation at the alcohol or hydroperoxy functional group will not result in the loss of two 

H2O molecules during collision events. Single losses of H2O or H2O2 would be observed during 

collision events if protonation occurred at the alcohol or hydroperoxy functional group, 

respectively, based on early experiments and work by Sarrafzadeh (2012).  As a result it was 

assumed that m/z 203 represented a [M + H + H2O]+ ion signal for a structure with molar mass 

184 g mol-1. An oxidation product with molar mass 184 was portrayed previously in Figure 8.6 

(e). Based on this structure, losses of 2 H2O molecules are possible if protonation occurred at the 

OH location of the carboxylic acid moiety and the PA for both water and the structure shown in 

Figure 8.6 (e) were similar enough to form an adduct [M + H + H2O]+.  

 

 

8.4. Summary for Analyzing Organic Peroxides during Smog Chamber Experiments using 

(+) APCI-MS/MS 

Since neutral mass losses of 34 u were imperative for detecting organic peroxides during 

standard analysis, this method was applied to detect organic peroxides during smog chamber 

studies of β-pinene ozonolysis. Although using methanol as an ionization reagent enhanced the 

ability to detect organic peroxide standards, this ionization reagent was not useful for detecting 

organic peroxides from β-pinene ozonolysis experiments. Therefore, organic hydroperoxide 

candidates from β-pinene ozonolysis were firstly detected using NLS analysis for mass losses of 

34 u while using protonated water and its clusters as an ionization reagent.  
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Although full scan mass spectra showed a range of ozonolysis products formed during 

smog chamber experiments, NLS analysis simplified full scan mass spectra to five m/z ion 

signals capable of losing 34 u during collision events. Based on NLS mass spectrum for 34 u 

mass losses, m/z 171, 173, 187, 201, and 203 were determined as having a hydroperoxy 

functional group within their structure.  

Additional product-ion mass spectra for these five m/z ions revealed other common mass 

losses such as 18 u (H2O), 32 u (O2), 46 u (H2O and CO) and 62 u (H2O2 and CO). Although 

mass losses of 18 and 46 u were not considered unique due to its appearance in product-ion mass 

spectra of carboxylic acids, mass losses of 32 u were logical for structures containing a peroxy 

bond while mass losses of 62 u were considered exclusive to structures containing a peroxy acid 

functional group. As a result, NLS analysis for 32 and 62 u mass losses were useful for selective 

detection of organic peroxy acids in conjunction with NLS analysis for 34 u mass losses. Support 

for 32 and 62 u mass loss came from the fragmentation pattern observed in the full scan mass 

spectrum of cumene hydroperoxide and product-ion mass spectrum of 3-chloroperobenzoic acid.  

Organic peroxide assignment and elucidation relied heavily on NLS analysis of 34 u 

mass losses. Standard analysis of tert-butyl hydroperoxide and peracetic acid coupled with 

published results from Baker et al., (2002) and Reinnig et al., (2009) supported the notion that 

mass losses of 34 u were exclusive to structures containing a hydroperoxy functional group. 

Ultimately, all observed mass losses were used to propose six organic peroxide structures along 

with credible fragmentation pathways. 
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9. Conclusion and Future Work 

The aim of this project was to evaluate the ability of (+) APCI-MS/MS to detect organic 

peroxides formed during β-pinene/ozonolysis experiments. Despite their importance to SOA 

formation and composition, their detection is problematic given the thermally labile nature of 

these compounds. Most of the analytical methods employed for its detection are considered “off-

line” and tend to be time consuming and require extensive sample treatment such as 

derivitization and separation. Moreover, they fail to provide information regarding the structure 

of organic peroxides. 

In this project, (+) APCI-MS/MS did not require extensive sample treatment and 

provided fast on-line analysis for organic peroxides. After protonation in the APCI ion source, 

m/z ions of interest could be isolated and studied using various tandem mass spectrometry modes 

such as product-ion scan and neutral-loss scan analysis mode. The tandem mass spectrometry 

analysis modes allowed for the ability to determine common mass losses between all organic 

peroxide standards. During organic peroxide standard analysis, mass losses of 34 u were 

common to organic peroxide standards containing a hydroperoxy functional group. Given this 

observation, losses of 34 u were used as a criterion for detecting organic peroxides containing a 

hydroperoxy functional group. As a result, neutral-loss scan analysis for 34 u mass loss increased 

the sensitivity for [M + H]+ ions during organic peroxide standard analysis.  

Similar to organic peroxide standard analysis, organic peroxide detection during smog 

chamber experiments relied heavily on unique mass losses observed during tandem mass 

spectrometry analysis. For instance, organic peroxide candidates were first detected by utilizing 

neutral-loss scan analysis mode for 34 u mass losses. Based on organic peroxide standard 
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analysis and work by Baker et al., 2001 and Reinnig et al., 2009, mass losses of 34 u were 

considered exclusive to organic peroxides containing a hydroperoxy functional group. Additional 

product-ion scan analyses showed that mass losses of 32 u and 62 u could be used as a criteria 

for organic peroxide detection. While 32 u mass losses supported a hydroperoxy functional 

group, mass losses of 62 u were possible for organic peroxides containing a peroxy acid 

functional group.  Exclusive mass losses of 32, 34 and 62 u were valid as long as smog chamber 

products were limited to carbon, hydrogen, and oxygen. Lastly, neutral-loss and product-ion scan 

analysis mode aided in the structural elucidation of six organic peroxide structures formed during 

β-pinene/ozonolysis experiments. 

 

9.1. Future Work 

9.1.1. The Influence of Experimental Conditions of Organic Peroxide Formation 

During this study, it was clear that organic peroxide formation was enhanced under 

certain laboratory conditions. For example, comparisons of product-ion mass spectra acquired in 

this study to the product-ion mass spectra acquired by Sarrafzadeh (2012) suggested a higher 

organic peroxide formation during ozonolysis experiments than photo-oxidation experiments. 

One of the contributing factors to observed differences was due to the presence of NOx during 

photo-oxidation experiments. Factors influencing the formation of organic peroxides during 

ozonolysis experiments were not investigated in great detail during this project. However, it is 

beneficial to understand what influences organic peroxide formation since it can be an important 

oxidizer of SO2 when H2O2 is limited in the atmosphere and its role as a reservoir for odd-

hydrogen radicals in the atmosphere (Lee et al., 2000). Prospective experiments can explore how 

changes to experimental conditions such as relative humidity, precursor and oxidant 
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concentration and NOx chemistry affects the formation of organic peroxides during smog 

chamber studies. Findings from this study and atmospheric literature can be utilized to 

investigate changes to organic peroxide formation (Baker et al., 2000, Docherty et al., 2005, and 

Reinnig et al., 2008 and 2009). For instance changes to ion signals pertaining to organic 

hydroperoxides can be monitored in real time using SRM analysis mode of the (+) APCI-

MS/MS. Ion-pairs formed due to unique mass losses of 34 u for organic hydroperoxides and 

peroxy acids can be monitored as changes to experimental conditions are implemented.   

 

9.1.2. Quantitative Analysis 

This project showed that selective detection for organic peroxides containing a 

hydroperoxy functional could be achieved. However, this type of analysis is qualitative and does 

not provide insight on the concentration of organic peroxides formed inside the smog chamber 

during β-pinene/ozonolysis experiments. Quantitative analyses were attempted by generating a 

calibration curve using commercially available organic peroxide standards. However, linear data 

could not be obtained. Previous (+) APCI-MS/MS calibration studies performed by Dobrusin 

(2012) indicated that linear calibration curves could be obtained by accounting for changes in the 

proton ion signal (m/z 37 and m/z 55) and plotting a relative signal rather than the raw ion count 

(IC) signal (Equation 9.1).  

!"[!!!]!

!"!/!    !"!  !"!/!    !!
               Equation 9.1 

However, linear signal versus concentration relationships could still not be obtained. This was 

due to an unknown sampling problem during standard addition. Future experiments are required 
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to determine the nature of the sampling problem. Overall, a more effective method to obtain 

calibration curves for quantitative and sensitivity analysis needs to be explored. 

Additionally, there were no suitable organic peroxide standards to assist in the 

quantification of formed organic peroxides during ozonolysis experiments. This was due to 

resultant ozonolysis products having more complex structures. The commercially available 

organic peroxide standards used in this study could not be used as a surrogate since it was highly 

unlikely to have the same sensitivity in the (+) APCI-MS/MS as organic peroxide structures 

formed during smog chamber studies. Therefore, future quantitation studies would require 

synthesizing standards that represent organic peroxides formed during smog chamber studies. 

Synthesized standards would have to be purified and standardized to determine the concentration 

organic peroxides formed during smog chamber studies.   

 

9.1.3. Analysis of Higher Molecular Weight Products 

During this study, the formation of higher molecular weight species (m/z values greater 

than 200) was apparent in full scan mass spectra for β-pinene ozonolysis experiments. High-

range m/z values tend to correspond to the formation of dimers and higher order oligomers 

(Heaton et al. 2007) in the sample or produced in the ion source. Moreover, these ion signals are 

of great interest since Heaton et al., (2007) and Yasmeen et al., (2010) proposed that higher 

molecular weight organics are great candidates for particle nucleation during monoterpene 

ozonolysis experiments. Although these ion signals were not thoroughly investigated, brief 

analysis revealed that these ion signals were not apparent during NLS analysis for 18, 32, 34, 46 

and 62 u mass losses. This indicated that losses of H2O, H2O2, C(O)OH, and C(O)OOH were not 
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dominant. During MS/MS experiments the resultant product-ion mass spectra were dominated by 

mid-range m/z values (m/z values between 100 and 200 u). For example, the product-ion mass 

spectra for m/z 277 and 291 revealed m/z 139 as the dominant fragment ion.  It appeared that 

these larger m/z ions were fragmenting almost in half producing smaller mid-size fragment ions. 

Since this study was limited to organic compounds exhibiting smaller mass losses such as CO, 

O2, H2O, H2O2, etc., the identity of these higher-range m/z ions were not determined. 

However, it has been suggested that organic peroxides can react further with other 

products to form higher molecular weight organics (dimers and oligomers) (Docherty et al., 

2005, Heaton et al., 2007, Reinnig et al., 2009 and DePalma et al., 2013). Products formed 

through further reactions of organic peroxides include peroxy hemiacetals, peroxide esters, and 

secondary ozonides (Heaton et al., 2007 and Reinnig et al., 2009). A summary of how these 

higher molecular weight compounds are formed is shown in Figure 9.1. Essentially, dimers are 

formed between either a hydroperoxide or stabilized criegee intermediated (SCI) and a second 

species (Heaton et al., 2007). Formed products like peroxy hemiacetal in aerosol mass have been 

observed by Docherty et al., (2005) during ozonolysis experiments with 1-tetradecane. Heaton et 

al., (2007) suggested that peroxy hemiacetals and peroxide esters might break in the middle of 

the compound to form mid-range m/z values. Given this notion, it is possible that the higher-

range m/z values observed in this study could represent the formation of these compounds. 

However, given the high pressure conditions in the ion source of the APCI-MS/MS, it is possible 

to form dimers. As a result, it is not possible to attribute any dimer or higher molecular weight 

oligomer formation to reactions occurring inside the smog chamber. Therefore, future 

investigation of these compounds would require utilizing a mass spectrometer where the 

ionization process is achieved at lower pressures.  
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Appendix A. Mass Filter Equations of Motion and Stability Diagram 

 

The equations used to describe gas-phase ions motion inside a quadrupole fields is taken 

from Miller and Denton (1986). Within the quadrupole structure is a time-dependent electric 

field defined by the potential applied to the quadrupoles. The strength of this electric field is 

calculated by taking the partial derivative of the potential, Φ, as shown in Equations A.1 to A.3.  

𝐸!   =   −   
𝜕Φ
𝜕𝑥 =   −[𝑈 + 𝑉𝐶𝑜𝑠 𝜔𝑡 )]

𝑥
𝑟!!

 
Equation A.1 

𝐸!   =   −   
𝜕Φ
𝜕𝑦 =    [𝑈 + 𝑉𝐶𝑜𝑠 𝜔𝑡 )]

𝑦
𝑟!!

 
Equation A.2 

𝐸!   =   −   
𝜕Φ
𝜕𝑧 = 0 

Equation A.3 

 

Where 

Φ = potential 

U = magnitude of applied DC potential  

V = magnitude of applied RF potential 

ω = angular frequency of RF potential 

t = time 

x and y = distance along the axes 

r0 = distance of rods from z-axis 
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Using Newton’s law of motion (F = ma), the force experienced by a gas-phase ion is given by 

Equation A.4 to A.6.  

𝑑!𝑥
𝑑𝑡! +   

𝑒𝑥
𝑚𝑟!!

𝑈 + 𝑉𝑐𝑜𝑠 𝜔𝑡 =   0 
Equation A.4 

𝑑!𝑦
𝑑𝑡! −   

𝑒𝑦
𝑚𝑟!!

𝑈 + 𝑉𝑐𝑜𝑠 𝜔𝑡 =   0 
Equation A.5 

𝑑!𝑧
𝑑𝑡! = 0 

Equation A.6 

 

Where 

e = electron charge (1.6 x 10-19 C) 

m = mass of ion 

 

Equation A.4 and A.5 can rewritten by defining a and q parameters as shown in Equation A.7 

and A.8 to produce Equation A.9 and A.10. Note the separation of potentials in Equations A.7 

and A.8, a is related to the DC potential while q is related to the RF potential. 

𝑎! =   𝑎! =   −𝑎! =   
4𝑒𝑈
𝑚𝜔!𝑟!!

 
Equation A.7 

𝑞! =   𝑞! =   −𝑞! =   
2𝑒𝑉

𝑚𝜔!𝑟!!
 

Equation A.8 

𝑑!𝑥
𝑑𝑡! +   

𝜔!

4   [𝑎 + 2𝑞𝐶𝑜𝑠 𝜔𝑡 )]𝑥 = 0 
Equation A.9 

𝑑!𝑦
𝑑𝑡! −   

𝜔!

4   [𝑎 + 2𝑞𝐶𝑜𝑠 𝜔𝑡 )]𝑦 = 0 
Equation A.10 
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Solutions of the differential equations will depend on the values of a and q. These values will 

determine whether a gas-phase ion trajectory is stable (bounded solution) or unstable (unbounded 

solution). Stability diagrams shown in Figure A.1 are created by plotting values of a and q to 

show regions of stability and instability. Overlaying the two stability diagrams in Figure A.1 

generates Figure A.2.  

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure A.1: Stability diagrams showing values of a and q that result in stable or unstable 
solutions for Equations A.9 and A.10. (a) Represents stability in the x-direction while (b) 
represents ion stability in the y-direction. The areas that are shaded indicate regions of stability. 
Figure was adopted from University of Richmond (1998).   
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Figure A.2: Overlay of the two stability diagrams illustrated in Figure A.1. The regions that 
overlap indicate values of a and q where there are stable solutions in both x- and y-direction. In 
these regions (shown in green), an ion can travel through the mass analyzers without making 
contact with the quadrupoles. Figure was adopted from University of Richmond (1998).    
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Appendix B. Collisions in Tandem Mass Spectrometry 

 

Potential Energy and Kinetic Energy 

Gas-phase ions are accelerated into q2 (collision cell) by a potential difference between 

Q1 and q2. As a result, the ions gain kinetic energy as given by Equation B.1 

 

m = mass of ion 

ν = ion velocity 

z = number of charges on ion 

e = electron charge (1.6 x 10-19 C) 

V = accelerating potential 

 

Collision Events in q2 

Collisions between a gas-phase ion and an inert gas are inelastic since a portion of the 

kinetic energy is converted to internal energy. Collision events are visualized and modelled using 

a center of mass (CM) reference frame (Douglas 1998). Equation B.2 describes the amount of 

kinetic energy that can be converted to internal energy (ECM).  

 

𝐸!" =   𝐸!"#  
𝑚!

𝑚! +   𝑚!
 Equation B.2 

 

1
2𝑚𝜈

! = 𝑧𝑒𝑉 
Equation B.1 
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ECM = Amount of energy converted to internal energy  

Elab = kinetic energy of precursor ion 

mc = mass of inert gas 

mi = mass of precursor ion 

 

By visual inspection of Equation B.2, increasing the amount of internal energy to drive 

precursor-ion decomposition can be caused by increasing Elab. Since Elab is the kinetic energy of 

the precursor-ion, increasing or decreasing the collision energy (CE) setting of the APCI-MS/MS 

can change the value of Elab. 
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Appendix C. Equations for Calculating Maximum Syringe Pump Output 

Vapour Pressure Calculations 

Parameters 

Temperature = (T + 273.15 K) 

Gas Constant = 0.0821 L atm mol-1 K-1 

Vapour Pressure of Methanol = 0.167 atm (at 25°C) 

Vapour Pressure of Water = 0.0313 atm (at 25°) 

 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  (𝑀) =   
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒  (𝑎𝑡𝑚)

𝑇 + 273.15  𝐾 (0.0821  𝐿  𝑎𝑡𝑚  𝑚𝑜𝑙!!  𝐾!!) 

 

Vapour Pressure Syringe Pump Limit 

Parameters 

Molecular weight of methanol = 32.04 g mol-1 

Molecular weight of water = 18.015 g mol-1 

Density (ρ) of methanol (at 25°C) = 0.7915 g mL-1 

Density (ρ) of water (at 25°C) = 0.9973 g mL-1 

 

  [𝑆𝑜𝑙𝑣𝑒𝑛𝑡]   𝑚𝑜𝑙  𝑚𝑖𝑛!!   =
  𝑆𝑦𝑟𝑖𝑛𝑔𝑒  𝑝𝑢𝑚𝑝  𝑓𝑙𝑜𝑤   𝑚𝐿  𝑚𝑖𝑛!!   𝑥  𝜌(𝑔  𝑚𝐿!!)  

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟  𝑊𝑒𝑖𝑔ℎ𝑡  (  𝑔  𝑚𝑜𝑙!!)  

 

[𝑆𝑜𝑙𝑣𝑒𝑛𝑡]   𝑀 =   
𝑆𝑜𝑙𝑣𝑒𝑛𝑡 (𝑚𝑜𝑙  𝑚𝑖𝑛!!)

𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑑  𝑎𝑖𝑟𝑓𝑙𝑜𝑤  (𝐿  𝑚𝑖𝑛!!) 

 

If the [Solvent](M) is less than the calculated concentration based on vapour pressure, then there 
are no liquid droplets forming in the ion source. 
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Appendix D. Operating Parameters for (+) APCI-MS/MS 

 

 

Analysis 
Mode 

Needle 
Current 

(kV) 

De-clustering 
Potential 

(V) 

Curtain 
Gas 

 

Collision 
Energy 

(V) 

Acquisition 
time 

(minutes) 

Full scan + 2 10 8 - 30 

Product-ion 
scan 

+ 2 10 8 5 to 30 10 

Neutral-loss 
scan 

+ 2 10 8 5 to 30 10 

Single 
reaction 

monitoring 

+ 2 10 8 5 to 30 30 

 

During this project, the APCI-MS/MS was set to unit resolution. This allowed for a mass 

resolution of +/- 0.1 u.  

 

 

 

 

 

 

 

 

Table D.1: Summary of the APCI-MS/MS General Operating Parameters for Various MS/MS 
modes 
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Appendix E. Calculations for β-pinene Ozonolysis Experiments 

Parameters Used 

Temperature: 273.15 K 

Pressure: 1 atm 

Chamber volume (Vchamber) : 8000 L 

Gas constant (R): 0.0821 L atm mol-1 K-1 

Avogadro’s number (AN): 6.022 x 1023 molecules mol-1  

Beta pinene molar mass: 136.23 g mol-1 

Beta pinene density (ρBeta-pinene) = 0.87 g cm-3 

Desired beta pinene concentration = 0.4 ppm 

 

Number density of air (Nair) (molecules cm-3) 

 

𝑁!"# =   
𝑃
𝑅  𝑇   ×  10

!!  ×  𝐴𝑁     

 

Number density of Beta pinene (NBeta pinene) (molecules cm-3) 

 

𝑁!"#$  !"#$#$ = 0.4  ×  𝑁!"#   ×  10!! 

 

Volume to inject (VBeta pinene) (mL) 

 

𝑉!"#$  !"#!"! =   𝑁!"#$  !"#$#$   ×    𝑉!!!"#$%   ×   
1
𝐴𝑁   ×  𝑚𝑜𝑙𝑎𝑟  𝑚𝑎𝑠𝑠  ×   

1
𝜌   ×  10

! 
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Ozone Generator Operating Parameters and Ozone Concentration Calculation 

 

Volume of the Chamber (Vchamber) = 8000 L 

Air flow (F): 10 standard cubic feet per hour (SCFH) 

0.472195 L min-1 = 1 SCFH 

Percent output (O): 25 % 

O3 efficiency at 100% output (E100): 3% 

 

𝐴𝑐𝑡𝑢𝑎𝑙  𝑜𝑢𝑡𝑝𝑢𝑡  𝑜𝑓  𝑂!(𝑂!"#$!%) =   
𝐸!""
100   ×  𝑂     

 

𝑉𝑜𝑙𝑢𝑚𝑒  𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑  𝑓𝑜𝑟  1  𝑝𝑝𝑚  𝑂!(𝑉!"#) = 𝑉!!!"#$%   ×  10! 

 

𝐹!/!"# = 𝐹  ×  0.472195  𝐿  𝑚𝑖𝑛!!   

 

𝑂𝑧𝑜𝑛𝑒  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛  𝑡𝑖𝑚𝑒 =   
1

𝐹!/!"#
  ×   

100
𝑂!"#$!%

  ×  𝑉!"# 
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Appendix F. Summary of Experimental Conditions for Smog Chamber 
Studies 

 

 

Experiment 
Date (M/D/Y) 

Ozone 
Concentration 

(ppm) 

β-Pinene 
Concentrationa 

(ppm) 

Relative 
humidity 

(%) 

Temperature 

                     
°C 

01/30/14 1.2 0.4 0.3 25.9 

02/05/14 1.1 0.4 0.4 25.9 

02/08/14 0.9 0.4 1.4 25.0 

02/13/14 5.6b 0.4 1.7 25.8 

02/21/14 1.3 0.4 1.6 25.4 

a Concentration of β-pinene was based on the amount injected into the chamber 

b Ozone generator operated beyond calculated time for desired ozone concentration. However, 
results were still deemed valid since smog chamber results were only used for qualitative 
purposes.  

 

 

 

 

 

 

 

 

Table F.1: Smog Chamber Experimental Conditions 
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Appendix G. Postulated Mechanism for β-pinene Ozonolysis 
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Figure G.1: Portrayed mechanism was adopted from Jenkin et al., 2004, Docherty et al., 2005, and 
Reinning et al., 2009. Products outlined in green were proposed by Jenkin et al., 2004. Products outlined 
in blue and orange were proposed and rationalized by Docherty et al., 2005 and Reinnig et al., 2009, 
respectively. Lastly, Reinnig et al., 2009, proposed products outlined in red however; its formation 
mechanism could not be ascertained. The acronym MM represents molar mass.  
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