FACULTY OF GRADUATE STUDIES ## Graduate Programme in Chemistry ### ORAL EXAMINATION PROSPECTUS # Patryk Wojtal A Candidate for the Degree of **Doctor of Philosophy** Title of Thesis: Nocturnal Measurements of HONO, NO₂, and NO₃ by Differential Optical Absorption Spectroscopy in Polluted Marine and Urban Atmospheres ***** Public Lecture Oral Examination 1:00 PM 2:00 PM Thursday, December 12, 2013 Thursday, December 12, 2013 Room 317 Petrie SEB Room 006A Steacie Building #### ABSTRACT Nitrogen oxides are ubiquitous throughout the lower atmosphere and significantly affect the chemistry of the atmosphere, air quality, and climate. A dataset obtained using differential optical absorption spectroscopy (DOAS) was analyzed in order to quantify the NO_3 , HONO and NO_2 concentrations at Saturna Island, and concentrations of N_2O_5 were calculated. Nocturnal measurements of NO_3 , NO_2 and HONO were performed using active-DOAS at York University. A method for calculating the lifetimes of NO₃ without assuming a steady-state approximation was determined and non steady-state lifetimes of NO₃ were calculated for both studies. The direct (via NO₃) and indirect (via N₂O₅) rate loss constants of NO₃ from the combined nocturnal reservoir (NO₃+N₂O₅) were determined as a function of time of night. Measurements of HONO over the polluted open ocean were performed for the first time. Rapidly established steady-states of HONO were observed, persisting throughout the night until sunrise. During the steady-state period (d[HONO]/dt ≈ 0), HONO was independent of the air mass source and NO₂, leading to a 0° order HONO formation with respect to NO₂, contrary to expectations. Potential reservoirs of HONO were explored and a conceptual model for HONO formation over aqueous surfaces was hypothesized. Subsequently, nocturnal measurements of HONO in the urban area were made at York University for a total of 242 nights. This urban dataset showed two types of HONO behavior. Firstly, a "steady-state" behavior was clearly observed for a subset of the data-set, similar to that observed in the aqueous environment at Saturna. Secondly, HONO concentrations were observed to highly correlate with NO₂ for another subset of the data-set $(d([HONO]/[NO_2])/dt \approx 0)$, showing evidence of 1° order behavior as expected for the accepted heterogeneous NO₂ hydrolysis mechanism of HONO formation ($2NO_2 + H_2O \rightarrow HONO + HNO_3$). Steady-states of HONO were observed during atmospherically unstable nights, while HONO was strongly correlated with NO₂ during stable nights. It was discovered that the main parameters distinguishing these two types of behavior was atmospheric stability and NO₂ concentration.